MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm2 Structured version   Visualization version   Unicode version

Theorem isnrm2 21162
Description: An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm2  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
Distinct variable group:    c, d, o, J

Proof of Theorem isnrm2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nrmtop 21140 . . 3  |-  ( J  e.  Nrm  ->  J  e.  Top )
2 nrmsep2 21160 . . . . . 6  |-  ( ( J  e.  Nrm  /\  ( c  e.  (
Clsd `  J )  /\  d  e.  ( Clsd `  J )  /\  ( c  i^i  d
)  =  (/) ) )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )
323exp2 1285 . . . . 5  |-  ( J  e.  Nrm  ->  (
c  e.  ( Clsd `  J )  ->  (
d  e.  ( Clsd `  J )  ->  (
( c  i^i  d
)  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) ) ) ) )
43impd 447 . . . 4  |-  ( J  e.  Nrm  ->  (
( c  e.  (
Clsd `  J )  /\  d  e.  ( Clsd `  J ) )  ->  ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
54ralrimivv 2970 . . 3  |-  ( J  e.  Nrm  ->  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )
61, 5jca 554 . 2  |-  ( J  e.  Nrm  ->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
7 simpl 473 . . 3  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )  ->  J  e.  Top )
8 eqid 2622 . . . . . . . . . . 11  |-  U. J  =  U. J
98opncld 20837 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( U. J  \  x )  e.  (
Clsd `  J )
)
109adantr 481 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( U. J  \  x )  e.  ( Clsd `  J
) )
11 ineq2 3808 . . . . . . . . . . . 12  |-  ( d  =  ( U. J  \  x )  ->  (
c  i^i  d )  =  ( c  i^i  ( U. J  \  x ) ) )
1211eqeq1d 2624 . . . . . . . . . . 11  |-  ( d  =  ( U. J  \  x )  ->  (
( c  i^i  d
)  =  (/)  <->  ( c  i^i  ( U. J  \  x ) )  =  (/) ) )
13 ineq2 3808 . . . . . . . . . . . . . 14  |-  ( d  =  ( U. J  \  x )  ->  (
( ( cls `  J
) `  o )  i^i  d )  =  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) ) )
1413eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( d  =  ( U. J  \  x )  ->  (
( ( ( cls `  J ) `  o
)  i^i  d )  =  (/)  <->  ( ( ( cls `  J ) `
 o )  i^i  ( U. J  \  x ) )  =  (/) ) )
1514anbi2d 740 . . . . . . . . . . . 12  |-  ( d  =  ( U. J  \  x )  ->  (
( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) )  <->  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) )  =  (/) ) ) )
1615rexbidv 3052 . . . . . . . . . . 11  |-  ( d  =  ( U. J  \  x )  ->  ( E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) )  <->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) )  =  (/) ) ) )
1712, 16imbi12d 334 . . . . . . . . . 10  |-  ( d  =  ( U. J  \  x )  ->  (
( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )  <->  ( (
c  i^i  ( U. J  \  x ) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) )  =  (/) ) ) ) )
1817rspcv 3305 . . . . . . . . 9  |-  ( ( U. J  \  x
)  e.  ( Clsd `  J )  ->  ( A. d  e.  ( Clsd `  J ) ( ( c  i^i  d
)  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  (
( c  i^i  ( U. J  \  x
) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) ) ) ) )
1910, 18syl 17 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( A. d  e.  ( Clsd `  J ) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  (
( c  i^i  ( U. J  \  x
) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) ) ) ) )
20 inssdif0 3947 . . . . . . . . . 10  |-  ( ( c  i^i  U. J
)  C_  x  <->  ( c  i^i  ( U. J  \  x ) )  =  (/) )
218cldss 20833 . . . . . . . . . . . . 13  |-  ( c  e.  ( Clsd `  J
)  ->  c  C_  U. J )
2221adantl 482 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  c  C_  U. J )
23 df-ss 3588 . . . . . . . . . . . 12  |-  ( c 
C_  U. J  <->  ( c  i^i  U. J )  =  c )
2422, 23sylib 208 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( c  i^i  U. J )  =  c )
2524sseq1d 3632 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( (
c  i^i  U. J ) 
C_  x  <->  c  C_  x ) )
2620, 25syl5bbr 274 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( (
c  i^i  ( U. J  \  x ) )  =  (/)  <->  c  C_  x
) )
27 inssdif0 3947 . . . . . . . . . . . 12  |-  ( ( ( ( cls `  J
) `  o )  i^i  U. J )  C_  x 
<->  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) )
28 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  J  e.  Top )
29 elssuni 4467 . . . . . . . . . . . . . . 15  |-  ( o  e.  J  ->  o  C_ 
U. J )
308clsss3 20863 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  o  C_  U. J )  ->  ( ( cls `  J ) `  o
)  C_  U. J )
3128, 29, 30syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( cls `  J
) `  o )  C_ 
U. J )
32 df-ss 3588 . . . . . . . . . . . . . 14  |-  ( ( ( cls `  J
) `  o )  C_ 
U. J  <->  ( (
( cls `  J
) `  o )  i^i  U. J )  =  ( ( cls `  J
) `  o )
)
3331, 32sylib 208 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( ( cls `  J
) `  o )  i^i  U. J )  =  ( ( cls `  J
) `  o )
)
3433sseq1d 3632 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( ( ( cls `  J ) `  o
)  i^i  U. J ) 
C_  x  <->  ( ( cls `  J ) `  o )  C_  x
) )
3527, 34syl5bbr 274 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/)  <->  ( ( cls `  J ) `  o
)  C_  x )
)
3635anbi2d 740 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) )  <->  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) )
3736rexbidva 3049 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( E. o  e.  J  (
c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) )  <->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) )
3826, 37imbi12d 334 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( (
( c  i^i  ( U. J  \  x
) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) ) )  <->  ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) ) )
3919, 38sylibd 229 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( A. d  e.  ( Clsd `  J ) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  (
c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) ) )
4039ralimdva 2962 . . . . . 6  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )  ->  A. c  e.  ( Clsd `  J ) ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) ) )
41 elin 3796 . . . . . . . . . 10  |-  ( c  e.  ( ( Clsd `  J )  i^i  ~P x )  <->  ( c  e.  ( Clsd `  J
)  /\  c  e.  ~P x ) )
42 selpw 4165 . . . . . . . . . . 11  |-  ( c  e.  ~P x  <->  c  C_  x )
4342anbi2i 730 . . . . . . . . . 10  |-  ( ( c  e.  ( Clsd `  J )  /\  c  e.  ~P x )  <->  ( c  e.  ( Clsd `  J
)  /\  c  C_  x ) )
4441, 43bitri 264 . . . . . . . . 9  |-  ( c  e.  ( ( Clsd `  J )  i^i  ~P x )  <->  ( c  e.  ( Clsd `  J
)  /\  c  C_  x ) )
4544imbi1i 339 . . . . . . . 8  |-  ( ( c  e.  ( (
Clsd `  J )  i^i  ~P x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )  <->  ( (
c  e.  ( Clsd `  J )  /\  c  C_  x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) )
46 impexp 462 . . . . . . . 8  |-  ( ( ( c  e.  (
Clsd `  J )  /\  c  C_  x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )  <->  ( c  e.  ( Clsd `  J
)  ->  ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) ) )
4745, 46bitri 264 . . . . . . 7  |-  ( ( c  e.  ( (
Clsd `  J )  i^i  ~P x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )  <->  ( c  e.  ( Clsd `  J
)  ->  ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) ) )
4847ralbii2 2978 . . . . . 6  |-  ( A. c  e.  ( ( Clsd `  J )  i^i 
~P x ) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x )  <->  A. c  e.  ( Clsd `  J
) ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) )
4940, 48syl6ibr 242 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )  ->  A. c  e.  (
( Clsd `  J )  i^i  ~P x ) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) )
5049ralrimdva 2969 . . . 4  |-  ( J  e.  Top  ->  ( A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J ) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  A. x  e.  J  A. c  e.  ( ( Clsd `  J
)  i^i  ~P x
) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `  o
)  C_  x )
) )
5150imp 445 . . 3  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )  ->  A. x  e.  J  A. c  e.  (
( Clsd `  J )  i^i  ~P x ) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )
52 isnrm 21139 . . 3  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. x  e.  J  A. c  e.  ( ( Clsd `  J
)  i^i  ~P x
) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `  o
)  C_  x )
) )
537, 51, 52sylanbrc 698 . 2  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )  ->  J  e.  Nrm )
546, 53impbii 199 1  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   ` cfv 5888   Topctop 20698   Clsdccld 20820   clsccl 20822   Nrmcnrm 21114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-cls 20825  df-nrm 21121
This theorem is referenced by:  isnrm3  21163
  Copyright terms: Public domain W3C validator