MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrusgr0 Structured version   Visualization version   Unicode version

Theorem isrusgr0 26462
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrusgr0.v  |-  V  =  (Vtx `  G )
isrusgr0.d  |-  D  =  (VtxDeg `  G )
Assertion
Ref Expression
isrusgr0  |-  ( ( G  e.  W  /\  K  e.  Z )  ->  ( G RegUSGraph  K  <->  ( G  e. USGraph  /\  K  e. NN0*  /\  A. v  e.  V  ( D `  v )  =  K ) ) )
Distinct variable groups:    v, G    v, K
Allowed substitution hints:    D( v)    V( v)    W( v)    Z( v)

Proof of Theorem isrusgr0
StepHypRef Expression
1 isrusgr 26457 . 2  |-  ( ( G  e.  W  /\  K  e.  Z )  ->  ( G RegUSGraph  K  <->  ( G  e. USGraph  /\  G RegGraph  K )
) )
2 isrusgr0.v . . . . 5  |-  V  =  (Vtx `  G )
3 isrusgr0.d . . . . 5  |-  D  =  (VtxDeg `  G )
42, 3isrgr 26455 . . . 4  |-  ( ( G  e.  W  /\  K  e.  Z )  ->  ( G RegGraph  K  <->  ( K  e. NN0*  /\  A. v  e.  V  ( D `  v )  =  K ) ) )
54anbi2d 740 . . 3  |-  ( ( G  e.  W  /\  K  e.  Z )  ->  ( ( G  e. USGraph  /\  G RegGraph  K )  <->  ( G  e. USGraph  /\  ( K  e. NN0*  /\  A. v  e.  V  ( D `  v )  =  K ) ) ) )
6 3anass 1042 . . 3  |-  ( ( G  e. USGraph  /\  K  e. NN0*  /\  A. v  e.  V  ( D `  v )  =  K )  <->  ( G  e. USGraph  /\  ( K  e. NN0*  /\  A. v  e.  V  ( D `  v )  =  K ) ) )
75, 6syl6bbr 278 . 2  |-  ( ( G  e.  W  /\  K  e.  Z )  ->  ( ( G  e. USGraph  /\  G RegGraph  K )  <->  ( G  e. USGraph  /\  K  e. NN0*  /\  A. v  e.  V  ( D `  v )  =  K ) ) )
81, 7bitrd 268 1  |-  ( ( G  e.  W  /\  K  e.  Z )  ->  ( G RegUSGraph  K  <->  ( G  e. USGraph  /\  K  e. NN0*  /\  A. v  e.  V  ( D `  v )  =  K ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   ` cfv 5888  NN0*cxnn0 11363  Vtxcvtx 25874   USGraph cusgr 26044  VtxDegcvtxdg 26361   RegGraph crgr 26451   RegUSGraph crusgr 26452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-rgr 26453  df-rusgr 26454
This theorem is referenced by:  usgreqdrusgr  26464  cusgrrusgr  26477  rgrusgrprc  26485  rusgrprc  26486
  Copyright terms: Public domain W3C validator