HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh2 Structured version   Visualization version   Unicode version

Theorem issh2 28066
Description: Subspace  H of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh2  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) )
Distinct variable group:    x, y, H

Proof of Theorem issh2
StepHypRef Expression
1 issh 28065 . 2  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  (
(  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H ) ) )
2 ax-hfvadd 27857 . . . . . . 7  |-  +h  :
( ~H  X.  ~H )
--> ~H
3 ffun 6048 . . . . . . 7  |-  (  +h  : ( ~H  X.  ~H ) --> ~H  ->  Fun  +h  )
42, 3ax-mp 5 . . . . . 6  |-  Fun  +h
5 xpss12 5225 . . . . . . . 8  |-  ( ( H  C_  ~H  /\  H  C_ 
~H )  ->  ( H  X.  H )  C_  ( ~H  X.  ~H )
)
65anidms 677 . . . . . . 7  |-  ( H 
C_  ~H  ->  ( H  X.  H )  C_  ( ~H  X.  ~H )
)
72fdmi 6052 . . . . . . 7  |-  dom  +h  =  ( ~H  X.  ~H )
86, 7syl6sseqr 3652 . . . . . 6  |-  ( H 
C_  ~H  ->  ( H  X.  H )  C_  dom  +h  )
9 funimassov 6811 . . . . . 6  |-  ( ( Fun  +h  /\  ( H  X.  H )  C_  dom  +h  )  ->  (
(  +h  " ( H  X.  H ) ) 
C_  H  <->  A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H
) )
104, 8, 9sylancr 695 . . . . 5  |-  ( H 
C_  ~H  ->  ( (  +h  " ( H  X.  H ) ) 
C_  H  <->  A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H
) )
11 ax-hfvmul 27862 . . . . . . 7  |-  .h  :
( CC  X.  ~H )
--> ~H
12 ffun 6048 . . . . . . 7  |-  (  .h  : ( CC  X.  ~H ) --> ~H  ->  Fun  .h  )
1311, 12ax-mp 5 . . . . . 6  |-  Fun  .h
14 xpss2 5229 . . . . . . 7  |-  ( H 
C_  ~H  ->  ( CC 
X.  H )  C_  ( CC  X.  ~H )
)
1511fdmi 6052 . . . . . . 7  |-  dom  .h  =  ( CC  X.  ~H )
1614, 15syl6sseqr 3652 . . . . . 6  |-  ( H 
C_  ~H  ->  ( CC 
X.  H )  C_  dom  .h  )
17 funimassov 6811 . . . . . 6  |-  ( ( Fun  .h  /\  ( CC  X.  H )  C_  dom  .h  )  ->  (
(  .h  " ( CC  X.  H ) ) 
C_  H  <->  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) )
1813, 16, 17sylancr 695 . . . . 5  |-  ( H 
C_  ~H  ->  ( (  .h  " ( CC 
X.  H ) ) 
C_  H  <->  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) )
1910, 18anbi12d 747 . . . 4  |-  ( H 
C_  ~H  ->  ( ( (  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H )  <->  ( A. x  e.  H  A. y  e.  H  (
x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) ) )
2019adantr 481 . . 3  |-  ( ( H  C_  ~H  /\  0h  e.  H )  ->  (
( (  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H )  <->  ( A. x  e.  H  A. y  e.  H  (
x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) ) )
2120pm5.32i 669 . 2  |-  ( ( ( H  C_  ~H  /\ 
0h  e.  H )  /\  ( (  +h  " ( H  X.  H ) )  C_  H  /\  (  .h  "
( CC  X.  H
) )  C_  H
) )  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) )
221, 21bitri 264 1  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912    C_ wss 3574    X. cxp 5112   dom cdm 5114   "cima 5117   Fun wfun 5882   -->wf 5884  (class class class)co 6650   CCcc 9934   ~Hchil 27776    +h cva 27777    .h csm 27778   0hc0v 27781   SHcsh 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-hilex 27856  ax-hfvadd 27857  ax-hfvmul 27862
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-sh 28064
This theorem is referenced by:  shaddcl  28074  shmulcl  28075  issh3  28076  helch  28100  hsn0elch  28105  hhshsslem2  28125  ocsh  28142  shscli  28176  shintcli  28188  imaelshi  28917
  Copyright terms: Public domain W3C validator