HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sh0 Structured version   Visualization version   Unicode version

Theorem sh0 28073
Description: The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sh0  |-  ( H  e.  SH  ->  0h  e.  H )

Proof of Theorem sh0
StepHypRef Expression
1 issh 28065 . . 3  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  (
(  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H ) ) )
21simplbi 476 . 2  |-  ( H  e.  SH  ->  ( H  C_  ~H  /\  0h  e.  H ) )
32simprd 479 1  |-  ( H  e.  SH  ->  0h  e.  H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990    C_ wss 3574    X. cxp 5112   "cima 5117   CCcc 9934   ~Hchil 27776    +h cva 27777    .h csm 27778   0hc0v 27781   SHcsh 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-sh 28064
This theorem is referenced by:  ch0  28085  hhssabloilem  28118  hhssnv  28121  oc0  28149  ocin  28155  shscli  28176  shsel1  28180  shintcli  28188  shunssi  28227  omlsii  28262  sh0le  28299  imaelshi  28917  shatomistici  29220
  Copyright terms: Public domain W3C validator