MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunex2 Structured version   Visualization version   Unicode version

Theorem wunex2 9560
Description: Construct a weak universe from a given set. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wunex2.f  |-  F  =  ( rec ( ( z  e.  _V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )
wunex2.u  |-  U  = 
U. ran  F
Assertion
Ref Expression
wunex2  |-  ( A  e.  V  ->  ( U  e. WUni  /\  A  C_  U ) )
Distinct variable group:    x, y, z
Allowed substitution hints:    A( x, y, z)    U( x, y, z)    F( x, y, z)    V( x, y, z)

Proof of Theorem wunex2
Dummy variables  u  a  v  w  b  m  n  i  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunex2.u . . . . . . . 8  |-  U  = 
U. ran  F
21eleq2i 2693 . . . . . . 7  |-  ( a  e.  U  <->  a  e.  U.
ran  F )
3 frfnom 7530 . . . . . . . . 9  |-  ( rec ( ( z  e. 
_V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )  Fn  om
4 wunex2.f . . . . . . . . . 10  |-  F  =  ( rec ( ( z  e.  _V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )
54fneq1i 5985 . . . . . . . . 9  |-  ( F  Fn  om  <->  ( rec ( ( z  e. 
_V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )  Fn  om )
63, 5mpbir 221 . . . . . . . 8  |-  F  Fn  om
7 fnunirn 6511 . . . . . . . 8  |-  ( F  Fn  om  ->  (
a  e.  U. ran  F  <->  E. m  e.  om  a  e.  ( F `  m ) ) )
86, 7ax-mp 5 . . . . . . 7  |-  ( a  e.  U. ran  F  <->  E. m  e.  om  a  e.  ( F `  m
) )
92, 8bitri 264 . . . . . 6  |-  ( a  e.  U  <->  E. m  e.  om  a  e.  ( F `  m ) )
10 elssuni 4467 . . . . . . . . . . 11  |-  ( a  e.  ( F `  m )  ->  a  C_ 
U. ( F `  m ) )
1110ad2antll 765 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  a  C_  U. ( F `  m
) )
12 ssun2 3777 . . . . . . . . . . 11  |-  U. ( F `  m )  C_  ( ( F `  m )  u.  U. ( F `  m ) )
13 ssun1 3776 . . . . . . . . . . 11  |-  ( ( F `  m )  u.  U. ( F `
 m ) ) 
C_  ( ( ( F `  m )  u.  U. ( F `
 m ) )  u.  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) ) )
1412, 13sstri 3612 . . . . . . . . . 10  |-  U. ( F `  m )  C_  ( ( ( F `
 m )  u. 
U. ( F `  m ) )  u. 
U_ u  e.  ( F `  m ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m ) 
|->  { u ,  v } ) ) )
1511, 14syl6ss 3615 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  a  C_  ( ( ( F `
 m )  u. 
U. ( F `  m ) )  u. 
U_ u  e.  ( F `  m ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m ) 
|->  { u ,  v } ) ) ) )
16 simprl 794 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  m  e.  om )
17 fvex 6201 . . . . . . . . . . . 12  |-  ( F `
 m )  e. 
_V
1817uniex 6953 . . . . . . . . . . . 12  |-  U. ( F `  m )  e.  _V
1917, 18unex 6956 . . . . . . . . . . 11  |-  ( ( F `  m )  u.  U. ( F `
 m ) )  e.  _V
20 prex 4909 . . . . . . . . . . . . 13  |-  { ~P u ,  U. u }  e.  _V
2117mptex 6486 . . . . . . . . . . . . . 14  |-  ( v  e.  ( F `  m )  |->  { u ,  v } )  e.  _V
2221rnex 7100 . . . . . . . . . . . . 13  |-  ran  (
v  e.  ( F `
 m )  |->  { u ,  v } )  e.  _V
2320, 22unex 6956 . . . . . . . . . . . 12  |-  ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m ) 
|->  { u ,  v } ) )  e. 
_V
2417, 23iunex 7147 . . . . . . . . . . 11  |-  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) )  e.  _V
2519, 24unex 6956 . . . . . . . . . 10  |-  ( ( ( F `  m
)  u.  U. ( F `  m )
)  u.  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) ) )  e.  _V
26 id 22 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  w  =  z )
27 unieq 4444 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  U. w  =  U. z )
2826, 27uneq12d 3768 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
w  u.  U. w
)  =  ( z  u.  U. z ) )
29 pweq 4161 . . . . . . . . . . . . . . . 16  |-  ( u  =  x  ->  ~P u  =  ~P x
)
30 unieq 4444 . . . . . . . . . . . . . . . 16  |-  ( u  =  x  ->  U. u  =  U. x )
3129, 30preq12d 4276 . . . . . . . . . . . . . . 15  |-  ( u  =  x  ->  { ~P u ,  U. u }  =  { ~P x ,  U. x } )
32 preq2 4269 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  y  ->  { u ,  v }  =  { u ,  y } )
3332cbvmptv 4750 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  w  |->  { u ,  v } )  =  ( y  e.  w  |->  { u ,  y } )
34 preq1 4268 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  x  ->  { u ,  y }  =  { x ,  y } )
3534mpteq2dv 4745 . . . . . . . . . . . . . . . . 17  |-  ( u  =  x  ->  (
y  e.  w  |->  { u ,  y } )  =  ( y  e.  w  |->  { x ,  y } ) )
3633, 35syl5eq 2668 . . . . . . . . . . . . . . . 16  |-  ( u  =  x  ->  (
v  e.  w  |->  { u ,  v } )  =  ( y  e.  w  |->  { x ,  y } ) )
3736rneqd 5353 . . . . . . . . . . . . . . 15  |-  ( u  =  x  ->  ran  ( v  e.  w  |->  { u ,  v } )  =  ran  ( y  e.  w  |->  { x ,  y } ) )
3831, 37uneq12d 3768 . . . . . . . . . . . . . 14  |-  ( u  =  x  ->  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  ( { ~P x ,  U. x }  u.  ran  ( y  e.  w  |->  { x ,  y } ) ) )
3938cbviunv 4559 . . . . . . . . . . . . 13  |-  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  U_ x  e.  w  ( { ~P x ,  U. x }  u.  ran  ( y  e.  w  |->  { x ,  y } ) )
40 mpteq1 4737 . . . . . . . . . . . . . . . 16  |-  ( w  =  z  ->  (
y  e.  w  |->  { x ,  y } )  =  ( y  e.  z  |->  { x ,  y } ) )
4140rneqd 5353 . . . . . . . . . . . . . . 15  |-  ( w  =  z  ->  ran  ( y  e.  w  |->  { x ,  y } )  =  ran  ( y  e.  z 
|->  { x ,  y } ) )
4241uneq2d 3767 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  ( { ~P x ,  U. x }  u.  ran  ( y  e.  w  |->  { x ,  y } ) )  =  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) )
4326, 42iuneq12d 4546 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  U_ x  e.  w  ( { ~P x ,  U. x }  u.  ran  ( y  e.  w  |->  { x ,  y } ) )  =  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) )
4439, 43syl5eq 2668 . . . . . . . . . . . 12  |-  ( w  =  z  ->  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) )
4528, 44uneq12d 3768 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
( w  u.  U. w )  u.  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) ) )  =  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) ) )
46 id 22 . . . . . . . . . . . . 13  |-  ( w  =  ( F `  m )  ->  w  =  ( F `  m ) )
47 unieq 4444 . . . . . . . . . . . . 13  |-  ( w  =  ( F `  m )  ->  U. w  =  U. ( F `  m ) )
4846, 47uneq12d 3768 . . . . . . . . . . . 12  |-  ( w  =  ( F `  m )  ->  (
w  u.  U. w
)  =  ( ( F `  m )  u.  U. ( F `
 m ) ) )
49 mpteq1 4737 . . . . . . . . . . . . . . 15  |-  ( w  =  ( F `  m )  ->  (
v  e.  w  |->  { u ,  v } )  =  ( v  e.  ( F `  m )  |->  { u ,  v } ) )
5049rneqd 5353 . . . . . . . . . . . . . 14  |-  ( w  =  ( F `  m )  ->  ran  ( v  e.  w  |->  { u ,  v } )  =  ran  ( v  e.  ( F `  m ) 
|->  { u ,  v } ) )
5150uneq2d 3767 . . . . . . . . . . . . 13  |-  ( w  =  ( F `  m )  ->  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m ) 
|->  { u ,  v } ) ) )
5246, 51iuneq12d 4546 . . . . . . . . . . . 12  |-  ( w  =  ( F `  m )  ->  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) ) )
5348, 52uneq12d 3768 . . . . . . . . . . 11  |-  ( w  =  ( F `  m )  ->  (
( w  u.  U. w )  u.  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) ) )  =  ( ( ( F `  m )  u.  U. ( F `
 m ) )  u.  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) ) ) )
544, 45, 53frsucmpt2 7535 . . . . . . . . . 10  |-  ( ( m  e.  om  /\  ( ( ( F `
 m )  u. 
U. ( F `  m ) )  u. 
U_ u  e.  ( F `  m ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m ) 
|->  { u ,  v } ) ) )  e.  _V )  -> 
( F `  suc  m )  =  ( ( ( F `  m )  u.  U. ( F `  m ) )  u.  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) ) ) )
5516, 25, 54sylancl 694 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  ( F `  suc  m )  =  ( ( ( F `
 m )  u. 
U. ( F `  m ) )  u. 
U_ u  e.  ( F `  m ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m ) 
|->  { u ,  v } ) ) ) )
5615, 55sseqtr4d 3642 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  a  C_  ( F `  suc  m
) )
57 fvssunirn 6217 . . . . . . . . 9  |-  ( F `
 suc  m )  C_ 
U. ran  F
5857, 1sseqtr4i 3638 . . . . . . . 8  |-  ( F `
 suc  m )  C_  U
5956, 58syl6ss 3615 . . . . . . 7  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  a  C_  U )
6059rexlimdvaa 3032 . . . . . 6  |-  ( A  e.  V  ->  ( E. m  e.  om  a  e.  ( F `  m )  ->  a  C_  U ) )
619, 60syl5bi 232 . . . . 5  |-  ( A  e.  V  ->  (
a  e.  U  -> 
a  C_  U )
)
6261ralrimiv 2965 . . . 4  |-  ( A  e.  V  ->  A. a  e.  U  a  C_  U )
63 dftr3 4756 . . . 4  |-  ( Tr  U  <->  A. a  e.  U  a  C_  U )
6462, 63sylibr 224 . . 3  |-  ( A  e.  V  ->  Tr  U )
65 1on 7567 . . . . . . . 8  |-  1o  e.  On
66 unexg 6959 . . . . . . . 8  |-  ( ( A  e.  V  /\  1o  e.  On )  -> 
( A  u.  1o )  e.  _V )
6765, 66mpan2 707 . . . . . . 7  |-  ( A  e.  V  ->  ( A  u.  1o )  e.  _V )
684fveq1i 6192 . . . . . . . 8  |-  ( F `
 (/) )  =  ( ( rec ( ( z  e.  _V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om ) `  (/) )
69 fr0g 7531 . . . . . . . 8  |-  ( ( A  u.  1o )  e.  _V  ->  (
( rec ( ( z  e.  _V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om ) `  (/) )  =  ( A  u.  1o ) )
7068, 69syl5eq 2668 . . . . . . 7  |-  ( ( A  u.  1o )  e.  _V  ->  ( F `  (/) )  =  ( A  u.  1o ) )
7167, 70syl 17 . . . . . 6  |-  ( A  e.  V  ->  ( F `  (/) )  =  ( A  u.  1o ) )
72 fvssunirn 6217 . . . . . . 7  |-  ( F `
 (/) )  C_  U. ran  F
7372, 1sseqtr4i 3638 . . . . . 6  |-  ( F `
 (/) )  C_  U
7471, 73syl6eqssr 3656 . . . . 5  |-  ( A  e.  V  ->  ( A  u.  1o )  C_  U )
7574unssbd 3791 . . . 4  |-  ( A  e.  V  ->  1o  C_  U )
76 1n0 7575 . . . 4  |-  1o  =/=  (/)
77 ssn0 3976 . . . 4  |-  ( ( 1o  C_  U  /\  1o  =/=  (/) )  ->  U  =/=  (/) )
7875, 76, 77sylancl 694 . . 3  |-  ( A  e.  V  ->  U  =/=  (/) )
79 pweq 4161 . . . . . . . . . . . . . . 15  |-  ( u  =  a  ->  ~P u  =  ~P a
)
80 unieq 4444 . . . . . . . . . . . . . . 15  |-  ( u  =  a  ->  U. u  =  U. a )
8179, 80preq12d 4276 . . . . . . . . . . . . . 14  |-  ( u  =  a  ->  { ~P u ,  U. u }  =  { ~P a ,  U. a } )
82 preq1 4268 . . . . . . . . . . . . . . . 16  |-  ( u  =  a  ->  { u ,  v }  =  { a ,  v } )
8382mpteq2dv 4745 . . . . . . . . . . . . . . 15  |-  ( u  =  a  ->  (
v  e.  ( F `
 m )  |->  { u ,  v } )  =  ( v  e.  ( F `  m )  |->  { a ,  v } ) )
8483rneqd 5353 . . . . . . . . . . . . . 14  |-  ( u  =  a  ->  ran  ( v  e.  ( F `  m ) 
|->  { u ,  v } )  =  ran  ( v  e.  ( F `  m ) 
|->  { a ,  v } ) )
8581, 84uneq12d 3768 . . . . . . . . . . . . 13  |-  ( u  =  a  ->  ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m ) 
|->  { u ,  v } ) )  =  ( { ~P a ,  U. a }  u.  ran  ( v  e.  ( F `  m ) 
|->  { a ,  v } ) ) )
8685ssiun2s 4564 . . . . . . . . . . . 12  |-  ( a  e.  ( F `  m )  ->  ( { ~P a ,  U. a }  u.  ran  ( v  e.  ( F `  m ) 
|->  { a ,  v } ) )  C_  U_ u  e.  ( F `
 m ) ( { ~P u , 
U. u }  u.  ran  ( v  e.  ( F `  m ) 
|->  { u ,  v } ) ) )
8786ad2antll 765 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  ( { ~P a ,  U. a }  u.  ran  ( v  e.  ( F `  m )  |->  { a ,  v } ) )  C_  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) ) )
88 ssun2 3777 . . . . . . . . . . . . 13  |-  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) )  C_  ( (
( F `  m
)  u.  U. ( F `  m )
)  u.  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) ) )
8988, 55syl5sseqr 3654 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) )  C_  ( F `  suc  m ) )
9089, 58syl6ss 3615 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) )  C_  U )
9187, 90sstrd 3613 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  ( { ~P a ,  U. a }  u.  ran  ( v  e.  ( F `  m )  |->  { a ,  v } ) )  C_  U )
9291unssad 3790 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  { ~P a ,  U. a }  C_  U )
93 vpwex 4849 . . . . . . . . . 10  |-  ~P a  e.  _V
94 vuniex 6954 . . . . . . . . . 10  |-  U. a  e.  _V
9593, 94prss 4351 . . . . . . . . 9  |-  ( ( ~P a  e.  U  /\  U. a  e.  U
)  <->  { ~P a , 
U. a }  C_  U )
9692, 95sylibr 224 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  ( ~P a  e.  U  /\  U. a  e.  U ) )
9796simprd 479 . . . . . . 7  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  U. a  e.  U )
9896simpld 475 . . . . . . 7  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  ~P a  e.  U )
991eleq2i 2693 . . . . . . . . . 10  |-  ( b  e.  U  <->  b  e.  U.
ran  F )
100 fnunirn 6511 . . . . . . . . . . 11  |-  ( F  Fn  om  ->  (
b  e.  U. ran  F  <->  E. n  e.  om  b  e.  ( F `  n ) ) )
1016, 100ax-mp 5 . . . . . . . . . 10  |-  ( b  e.  U. ran  F  <->  E. n  e.  om  b  e.  ( F `  n
) )
10299, 101bitri 264 . . . . . . . . 9  |-  ( b  e.  U  <->  E. n  e.  om  b  e.  ( F `  n ) )
103 simplrl 800 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  ->  m  e.  om )
104 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  ->  n  e.  om )
105 ordom 7074 . . . . . . . . . . . . . . . . . 18  |-  Ord  om
106 ordunel 7027 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  om  /\  m  e.  om  /\  n  e. 
om )  ->  (
m  u.  n )  e.  om )
107105, 106mp3an1 1411 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  om  /\  n  e.  om )  ->  ( m  u.  n
)  e.  om )
108103, 104, 107syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  -> 
( m  u.  n
)  e.  om )
109 ssun1 3776 . . . . . . . . . . . . . . . . 17  |-  m  C_  ( m  u.  n
)
110 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
111110sseq2d 3633 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  m  ->  (
( F `  m
)  C_  ( F `  k )  <->  ( F `  m )  C_  ( F `  m )
) )
112 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
113112sseq2d 3633 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  i  ->  (
( F `  m
)  C_  ( F `  k )  <->  ( F `  m )  C_  ( F `  i )
) )
114 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  suc  i  -> 
( F `  k
)  =  ( F `
 suc  i )
)
115114sseq2d 3633 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  suc  i  -> 
( ( F `  m )  C_  ( F `  k )  <->  ( F `  m ) 
C_  ( F `  suc  i ) ) )
116 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( m  u.  n )  ->  ( F `  k )  =  ( F `  ( m  u.  n
) ) )
117116sseq2d 3633 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( m  u.  n )  ->  (
( F `  m
)  C_  ( F `  k )  <->  ( F `  m )  C_  ( F `  ( m  u.  n ) ) ) )
118 ssid 3624 . . . . . . . . . . . . . . . . . . 19  |-  ( F `
 m )  C_  ( F `  m )
119118a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  om  ->  ( F `  m )  C_  ( F `  m
) )
120 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  i  ->  ( F `  m )  =  ( F `  i ) )
121 suceq 5790 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  =  i  ->  suc  m  =  suc  i )
122121fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  i  ->  ( F `  suc  m )  =  ( F `  suc  i ) )
123120, 122sseq12d 3634 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  i  ->  (
( F `  m
)  C_  ( F `  suc  m )  <->  ( F `  i )  C_  ( F `  suc  i ) ) )
124 ssun1 3776 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F `
 m )  C_  ( ( F `  m )  u.  U. ( F `  m ) )
125124, 13sstri 3612 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F `
 m )  C_  ( ( ( F `
 m )  u. 
U. ( F `  m ) )  u. 
U_ u  e.  ( F `  m ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m ) 
|->  { u ,  v } ) ) )
12625, 54mpan2 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  om  ->  ( F `  suc  m )  =  ( ( ( F `  m )  u.  U. ( F `
 m ) )  u.  U_ u  e.  ( F `  m
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  m )  |->  { u ,  v } ) ) ) )
127125, 126syl5sseqr 3654 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  om  ->  ( F `  m )  C_  ( F `  suc  m ) )
128123, 127vtoclga 3272 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  om  ->  ( F `  i )  C_  ( F `  suc  i ) )
129128ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( i  e.  om  /\  m  e.  om )  /\  m  C_  i )  ->  ( F `  i )  C_  ( F `  suc  i ) )
130 sstr2 3610 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  m ) 
C_  ( F `  i )  ->  (
( F `  i
)  C_  ( F `  suc  i )  -> 
( F `  m
)  C_  ( F `  suc  i ) ) )
131129, 130syl5com 31 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  om  /\  m  e.  om )  /\  m  C_  i )  ->  ( ( F `
 m )  C_  ( F `  i )  ->  ( F `  m )  C_  ( F `  suc  i ) ) )
132111, 113, 115, 117, 119, 131findsg 7093 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( m  u.  n )  e.  om  /\  m  e.  om )  /\  m  C_  ( m  u.  n ) )  ->  ( F `  m )  C_  ( F `  ( m  u.  n ) ) )
133109, 132mpan2 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  u.  n
)  e.  om  /\  m  e.  om )  ->  ( F `  m
)  C_  ( F `  ( m  u.  n
) ) )
134108, 103, 133syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  -> 
( F `  m
)  C_  ( F `  ( m  u.  n
) ) )
135 simplrr 801 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  -> 
a  e.  ( F `
 m ) )
136134, 135sseldd 3604 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  -> 
a  e.  ( F `
 ( m  u.  n ) ) )
13782mpteq2dv 4745 . . . . . . . . . . . . . . . . 17  |-  ( u  =  a  ->  (
v  e.  ( F `
 ( m  u.  n ) )  |->  { u ,  v } )  =  ( v  e.  ( F `  ( m  u.  n
) )  |->  { a ,  v } ) )
138137rneqd 5353 . . . . . . . . . . . . . . . 16  |-  ( u  =  a  ->  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { u ,  v } )  =  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { a ,  v } ) )
13981, 138uneq12d 3768 . . . . . . . . . . . . . . 15  |-  ( u  =  a  ->  ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { u ,  v } ) )  =  ( { ~P a ,  U. a }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { a ,  v } ) ) )
140139ssiun2s 4564 . . . . . . . . . . . . . 14  |-  ( a  e.  ( F `  ( m  u.  n
) )  ->  ( { ~P a ,  U. a }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { a ,  v } ) )  C_  U_ u  e.  ( F `
 ( m  u.  n ) ) ( { ~P u , 
U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { u ,  v } ) ) )
141136, 140syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  -> 
( { ~P a ,  U. a }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { a ,  v } ) )  C_  U_ u  e.  ( F `
 ( m  u.  n ) ) ( { ~P u , 
U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { u ,  v } ) ) )
142 ssun2 3777 . . . . . . . . . . . . . . 15  |-  U_ u  e.  ( F `  (
m  u.  n ) ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n
) )  |->  { u ,  v } ) )  C_  ( (
( F `  (
m  u.  n ) )  u.  U. ( F `  ( m  u.  n ) ) )  u.  U_ u  e.  ( F `  (
m  u.  n ) ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n
) )  |->  { u ,  v } ) ) )
143 fvex 6201 . . . . . . . . . . . . . . . . . 18  |-  ( F `
 ( m  u.  n ) )  e. 
_V
144143uniex 6953 . . . . . . . . . . . . . . . . . 18  |-  U. ( F `  ( m  u.  n ) )  e. 
_V
145143, 144unex 6956 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  ( m  u.  n ) )  u.  U. ( F `
 ( m  u.  n ) ) )  e.  _V
146143mptex 6486 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  e.  ( F `  ( m  u.  n
) )  |->  { u ,  v } )  e.  _V
147146rnex 7100 . . . . . . . . . . . . . . . . . . 19  |-  ran  (
v  e.  ( F `
 ( m  u.  n ) )  |->  { u ,  v } )  e.  _V
14820, 147unex 6956 . . . . . . . . . . . . . . . . . 18  |-  ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { u ,  v } ) )  e. 
_V
149143, 148iunex 7147 . . . . . . . . . . . . . . . . 17  |-  U_ u  e.  ( F `  (
m  u.  n ) ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n
) )  |->  { u ,  v } ) )  e.  _V
150145, 149unex 6956 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  (
m  u.  n ) )  u.  U. ( F `  ( m  u.  n ) ) )  u.  U_ u  e.  ( F `  (
m  u.  n ) ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n
) )  |->  { u ,  v } ) ) )  e.  _V
151 id 22 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  ( F `  ( m  u.  n
) )  ->  w  =  ( F `  ( m  u.  n
) ) )
152 unieq 4444 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  ( F `  ( m  u.  n
) )  ->  U. w  =  U. ( F `  ( m  u.  n
) ) )
153151, 152uneq12d 3768 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( F `  ( m  u.  n
) )  ->  (
w  u.  U. w
)  =  ( ( F `  ( m  u.  n ) )  u.  U. ( F `
 ( m  u.  n ) ) ) )
154 mpteq1 4737 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  ( F `  ( m  u.  n
) )  ->  (
v  e.  w  |->  { u ,  v } )  =  ( v  e.  ( F `  ( m  u.  n
) )  |->  { u ,  v } ) )
155154rneqd 5353 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  ( F `  ( m  u.  n
) )  ->  ran  ( v  e.  w  |->  { u ,  v } )  =  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { u ,  v } ) )
156155uneq2d 3767 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  ( F `  ( m  u.  n
) )  ->  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { u ,  v } ) ) )
157151, 156iuneq12d 4546 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( F `  ( m  u.  n
) )  ->  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  U_ u  e.  ( F `  (
m  u.  n ) ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n
) )  |->  { u ,  v } ) ) )
158153, 157uneq12d 3768 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( F `  ( m  u.  n
) )  ->  (
( w  u.  U. w )  u.  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) ) )  =  ( ( ( F `  ( m  u.  n ) )  u.  U. ( F `
 ( m  u.  n ) ) )  u.  U_ u  e.  ( F `  (
m  u.  n ) ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n
) )  |->  { u ,  v } ) ) ) )
1594, 45, 158frsucmpt2 7535 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  u.  n
)  e.  om  /\  ( ( ( F `
 ( m  u.  n ) )  u. 
U. ( F `  ( m  u.  n
) ) )  u. 
U_ u  e.  ( F `  ( m  u.  n ) ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { u ,  v } ) ) )  e.  _V )  -> 
( F `  suc  ( m  u.  n
) )  =  ( ( ( F `  ( m  u.  n
) )  u.  U. ( F `  ( m  u.  n ) ) )  u.  U_ u  e.  ( F `  (
m  u.  n ) ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n
) )  |->  { u ,  v } ) ) ) )
160108, 150, 159sylancl 694 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  -> 
( F `  suc  ( m  u.  n
) )  =  ( ( ( F `  ( m  u.  n
) )  u.  U. ( F `  ( m  u.  n ) ) )  u.  U_ u  e.  ( F `  (
m  u.  n ) ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n
) )  |->  { u ,  v } ) ) ) )
161142, 160syl5sseqr 3654 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  ->  U_ u  e.  ( F `  ( m  u.  n ) ) ( { ~P u , 
U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { u ,  v } ) )  C_  ( F `  suc  (
m  u.  n ) ) )
162 fvssunirn 6217 . . . . . . . . . . . . . . 15  |-  ( F `
 suc  ( m  u.  n ) )  C_  U.
ran  F
163162, 1sseqtr4i 3638 . . . . . . . . . . . . . 14  |-  ( F `
 suc  ( m  u.  n ) )  C_  U
164161, 163syl6ss 3615 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  ->  U_ u  e.  ( F `  ( m  u.  n ) ) ( { ~P u , 
U. u }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { u ,  v } ) )  C_  U )
165141, 164sstrd 3613 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  -> 
( { ~P a ,  U. a }  u.  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { a ,  v } ) )  C_  U )
166165unssbd 3791 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  ->  ran  ( v  e.  ( F `  ( m  u.  n ) ) 
|->  { a ,  v } )  C_  U
)
167 ssun2 3777 . . . . . . . . . . . . . . . . . . 19  |-  n  C_  ( m  u.  n
)
168 id 22 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  ( m  u.  n )  ->  i  =  ( m  u.  n ) )
169167, 168syl5sseqr 3654 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  ( m  u.  n )  ->  n  C_  i )
170169biantrud 528 . . . . . . . . . . . . . . . . 17  |-  ( i  =  ( m  u.  n )  ->  (
n  e.  om  <->  ( n  e.  om  /\  n  C_  i ) ) )
171170bicomd 213 . . . . . . . . . . . . . . . 16  |-  ( i  =  ( m  u.  n )  ->  (
( n  e.  om  /\  n  C_  i )  <->  n  e.  om ) )
172 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( i  =  ( m  u.  n )  ->  ( F `  i )  =  ( F `  ( m  u.  n
) ) )
173172sseq2d 3633 . . . . . . . . . . . . . . . 16  |-  ( i  =  ( m  u.  n )  ->  (
( F `  n
)  C_  ( F `  i )  <->  ( F `  n )  C_  ( F `  ( m  u.  n ) ) ) )
174171, 173imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( i  =  ( m  u.  n )  ->  (
( ( n  e. 
om  /\  n  C_  i
)  ->  ( F `  n )  C_  ( F `  i )
)  <->  ( n  e. 
om  ->  ( F `  n )  C_  ( F `  ( m  u.  n ) ) ) ) )
175 eleq1 2689 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  n  ->  (
m  e.  om  <->  n  e.  om ) )
176175anbi2d 740 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  n  ->  (
( i  e.  om  /\  m  e.  om )  <->  ( i  e.  om  /\  n  e.  om )
) )
177 sseq1 3626 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  n  ->  (
m  C_  i  <->  n  C_  i
) )
178176, 177anbi12d 747 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  n  ->  (
( ( i  e. 
om  /\  m  e.  om )  /\  m  C_  i )  <->  ( (
i  e.  om  /\  n  e.  om )  /\  n  C_  i ) ) )
179 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  n  ->  ( F `  m )  =  ( F `  n ) )
180179sseq1d 3632 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  n  ->  (
( F `  m
)  C_  ( F `  i )  <->  ( F `  n )  C_  ( F `  i )
) )
181178, 180imbi12d 334 . . . . . . . . . . . . . . . . 17  |-  ( m  =  n  ->  (
( ( ( i  e.  om  /\  m  e.  om )  /\  m  C_  i )  ->  ( F `  m )  C_  ( F `  i
) )  <->  ( (
( i  e.  om  /\  n  e.  om )  /\  n  C_  i )  ->  ( F `  n )  C_  ( F `  i )
) ) )
182111, 113, 115, 113, 119, 131findsg 7093 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  om  /\  m  e.  om )  /\  m  C_  i )  ->  ( F `  m )  C_  ( F `  i )
)
183181, 182chvarv 2263 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  om  /\  n  e.  om )  /\  n  C_  i )  ->  ( F `  n )  C_  ( F `  i )
)
184183expl 648 . . . . . . . . . . . . . . 15  |-  ( i  e.  om  ->  (
( n  e.  om  /\  n  C_  i )  ->  ( F `  n
)  C_  ( F `  i ) ) )
185174, 184vtoclga 3272 . . . . . . . . . . . . . 14  |-  ( ( m  u.  n )  e.  om  ->  (
n  e.  om  ->  ( F `  n ) 
C_  ( F `  ( m  u.  n
) ) ) )
186108, 104, 185sylc 65 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  -> 
( F `  n
)  C_  ( F `  ( m  u.  n
) ) )
187 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  -> 
b  e.  ( F `
 n ) )
188186, 187sseldd 3604 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  -> 
b  e.  ( F `
 ( m  u.  n ) ) )
189 prex 4909 . . . . . . . . . . . 12  |-  { a ,  b }  e.  _V
190 eqid 2622 . . . . . . . . . . . . 13  |-  ( v  e.  ( F `  ( m  u.  n
) )  |->  { a ,  v } )  =  ( v  e.  ( F `  (
m  u.  n ) )  |->  { a ,  v } )
191 preq2 4269 . . . . . . . . . . . . 13  |-  ( v  =  b  ->  { a ,  v }  =  { a ,  b } )
192190, 191elrnmpt1s 5373 . . . . . . . . . . . 12  |-  ( ( b  e.  ( F `
 ( m  u.  n ) )  /\  { a ,  b }  e.  _V )  ->  { a ,  b }  e.  ran  (
v  e.  ( F `
 ( m  u.  n ) )  |->  { a ,  v } ) )
193188, 189, 192sylancl 694 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  ->  { a ,  b }  e.  ran  (
v  e.  ( F `
 ( m  u.  n ) )  |->  { a ,  v } ) )
194166, 193sseldd 3604 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  /\  ( n  e.  om  /\  b  e.  ( F `  n
) ) )  ->  { a ,  b }  e.  U )
195194rexlimdvaa 3032 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  ( E. n  e.  om  b  e.  ( F `  n
)  ->  { a ,  b }  e.  U ) )
196102, 195syl5bi 232 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  ( b  e.  U  ->  { a ,  b }  e.  U ) )
197196ralrimiv 2965 . . . . . . 7  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  A. b  e.  U  { a ,  b }  e.  U )
19897, 98, 1973jca 1242 . . . . . 6  |-  ( ( A  e.  V  /\  ( m  e.  om  /\  a  e.  ( F `
 m ) ) )  ->  ( U. a  e.  U  /\  ~P a  e.  U  /\  A. b  e.  U  { a ,  b }  e.  U ) )
199198rexlimdvaa 3032 . . . . 5  |-  ( A  e.  V  ->  ( E. m  e.  om  a  e.  ( F `  m )  ->  ( U. a  e.  U  /\  ~P a  e.  U  /\  A. b  e.  U  { a ,  b }  e.  U ) ) )
2009, 199syl5bi 232 . . . 4  |-  ( A  e.  V  ->  (
a  e.  U  -> 
( U. a  e.  U  /\  ~P a  e.  U  /\  A. b  e.  U  { a ,  b }  e.  U ) ) )
201200ralrimiv 2965 . . 3  |-  ( A  e.  V  ->  A. a  e.  U  ( U. a  e.  U  /\  ~P a  e.  U  /\  A. b  e.  U  { a ,  b }  e.  U ) )
202 rdgfun 7512 . . . . . . . . 9  |-  Fun  rec ( ( z  e. 
_V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )
203 omex 8540 . . . . . . . . 9  |-  om  e.  _V
204 resfunexg 6479 . . . . . . . . 9  |-  ( ( Fun  rec ( ( z  e.  _V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  /\  om  e.  _V )  ->  ( rec (
( z  e.  _V  |->  ( ( z  u. 
U. z )  u. 
U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )  e.  _V )
205202, 203, 204mp2an 708 . . . . . . . 8  |-  ( rec ( ( z  e. 
_V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )  e.  _V
2064, 205eqeltri 2697 . . . . . . 7  |-  F  e. 
_V
207206rnex 7100 . . . . . 6  |-  ran  F  e.  _V
208207uniex 6953 . . . . 5  |-  U. ran  F  e.  _V
2091, 208eqeltri 2697 . . . 4  |-  U  e. 
_V
210 iswun 9526 . . . 4  |-  ( U  e.  _V  ->  ( U  e. WUni  <->  ( Tr  U  /\  U  =/=  (/)  /\  A. a  e.  U  ( U. a  e.  U  /\  ~P a  e.  U  /\  A. b  e.  U  { a ,  b }  e.  U ) ) ) )
211209, 210ax-mp 5 . . 3  |-  ( U  e. WUni 
<->  ( Tr  U  /\  U  =/=  (/)  /\  A. a  e.  U  ( U. a  e.  U  /\  ~P a  e.  U  /\  A. b  e.  U  { a ,  b }  e.  U ) ) )
21264, 78, 201, 211syl3anbrc 1246 . 2  |-  ( A  e.  V  ->  U  e. WUni )
21374unssad 3790 . 2  |-  ( A  e.  V  ->  A  C_  U )
214212, 213jca 554 1  |-  ( A  e.  V  ->  ( U  e. WUni  /\  A  C_  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {cpr 4179   U.cuni 4436   U_ciun 4520    |-> cmpt 4729   Tr wtr 4752   ran crn 5115    |` cres 5116   Ord word 5722   Oncon0 5723   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   ` cfv 5888   omcom 7065   reccrdg 7505   1oc1o 7553  WUnicwun 9522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-wun 9524
This theorem is referenced by:  wunex  9561  wuncval2  9569
  Copyright terms: Public domain W3C validator