MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intwun Structured version   Visualization version   Unicode version

Theorem intwun 9557
Description: The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
intwun  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  |^| A  e. WUni )

Proof of Theorem intwun
Dummy variables  x  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . 6  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  A  C_ WUni )
21sselda 3603 . . . . 5  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  u  e.  A )  ->  u  e. WUni )
3 wuntr 9527 . . . . 5  |-  ( u  e. WUni  ->  Tr  u )
42, 3syl 17 . . . 4  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  u  e.  A )  ->  Tr  u )
54ralrimiva 2966 . . 3  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  A. u  e.  A  Tr  u
)
6 trint 4768 . . 3  |-  ( A. u  e.  A  Tr  u  ->  Tr  |^| A )
75, 6syl 17 . 2  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  Tr  |^| A )
82wun0 9540 . . . . 5  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  u  e.  A )  ->  (/)  e.  u
)
98ralrimiva 2966 . . . 4  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  A. u  e.  A  (/)  e.  u
)
10 0ex 4790 . . . . 5  |-  (/)  e.  _V
1110elint2 4482 . . . 4  |-  ( (/)  e.  |^| A  <->  A. u  e.  A  (/)  e.  u
)
129, 11sylibr 224 . . 3  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  (/)  e.  |^| A )
13 ne0i 3921 . . 3  |-  ( (/)  e.  |^| A  ->  |^| A  =/=  (/) )
1412, 13syl 17 . 2  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  |^| A  =/=  (/) )
152adantlr 751 . . . . . . 7  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  ->  u  e. WUni )
16 intss1 4492 . . . . . . . . . 10  |-  ( u  e.  A  ->  |^| A  C_  u )
1716adantl 482 . . . . . . . . 9  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  u  e.  A )  ->  |^| A  C_  u )
1817sselda 3603 . . . . . . . 8  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  u  e.  A )  /\  x  e.  |^| A
)  ->  x  e.  u )
1918an32s 846 . . . . . . 7  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  ->  x  e.  u )
2015, 19wununi 9528 . . . . . 6  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  ->  U. x  e.  u )
2120ralrimiva 2966 . . . . 5  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  A. u  e.  A  U. x  e.  u
)
22 vuniex 6954 . . . . . 6  |-  U. x  e.  _V
2322elint2 4482 . . . . 5  |-  ( U. x  e.  |^| A  <->  A. u  e.  A  U. x  e.  u )
2421, 23sylibr 224 . . . 4  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  U. x  e.  |^| A
)
2515, 19wunpw 9529 . . . . . 6  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  ->  ~P x  e.  u )
2625ralrimiva 2966 . . . . 5  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  A. u  e.  A  ~P x  e.  u
)
27 vpwex 4849 . . . . . 6  |-  ~P x  e.  _V
2827elint2 4482 . . . . 5  |-  ( ~P x  e.  |^| A  <->  A. u  e.  A  ~P x  e.  u )
2926, 28sylibr 224 . . . 4  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  ~P x  e.  |^| A
)
3015adantlr 751 . . . . . . . 8  |-  ( ( ( ( ( A 
C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  /\  u  e.  A )  ->  u  e. WUni )
3119adantlr 751 . . . . . . . 8  |-  ( ( ( ( ( A 
C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  /\  u  e.  A )  ->  x  e.  u )
3216adantl 482 . . . . . . . . . 10  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  ->  |^| A  C_  u )
3332sselda 3603 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  /\  y  e.  |^| A )  ->  y  e.  u )
3433an32s 846 . . . . . . . 8  |-  ( ( ( ( ( A 
C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  /\  u  e.  A )  ->  y  e.  u )
3530, 31, 34wunpr 9531 . . . . . . 7  |-  ( ( ( ( ( A 
C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  /\  u  e.  A )  ->  { x ,  y }  e.  u )
3635ralrimiva 2966 . . . . . 6  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  ->  A. u  e.  A  { x ,  y }  e.  u )
37 prex 4909 . . . . . . 7  |-  { x ,  y }  e.  _V
3837elint2 4482 . . . . . 6  |-  ( { x ,  y }  e.  |^| A  <->  A. u  e.  A  { x ,  y }  e.  u )
3936, 38sylibr 224 . . . . 5  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  ->  { x ,  y }  e.  |^| A )
4039ralrimiva 2966 . . . 4  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  A. y  e.  |^| A { x ,  y }  e.  |^| A
)
4124, 29, 403jca 1242 . . 3  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  -> 
( U. x  e. 
|^| A  /\  ~P x  e.  |^| A  /\  A. y  e.  |^| A { x ,  y }  e.  |^| A
) )
4241ralrimiva 2966 . 2  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  A. x  e.  |^| A ( U. x  e.  |^| A  /\  ~P x  e.  |^| A  /\  A. y  e.  |^| A { x ,  y }  e.  |^| A
) )
43 simpr 477 . . . 4  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  A  =/=  (/) )
44 intex 4820 . . . 4  |-  ( A  =/=  (/)  <->  |^| A  e.  _V )
4543, 44sylib 208 . . 3  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  |^| A  e.  _V )
46 iswun 9526 . . 3  |-  ( |^| A  e.  _V  ->  (
|^| A  e. WUni  <->  ( Tr  |^| A  /\  |^| A  =/=  (/)  /\  A. x  e.  |^| A ( U. x  e.  |^| A  /\  ~P x  e.  |^| A  /\  A. y  e.  |^| A { x ,  y }  e.  |^| A
) ) ) )
4745, 46syl 17 . 2  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  ( |^| A  e. WUni  <->  ( Tr  |^| A  /\  |^| A  =/=  (/)  /\  A. x  e.  |^| A ( U. x  e.  |^| A  /\  ~P x  e. 
|^| A  /\  A. y  e.  |^| A {
x ,  y }  e.  |^| A ) ) ) )
487, 14, 42, 47mpbir3and 1245 1  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  |^| A  e. WUni )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {cpr 4179   U.cuni 4436   |^|cint 4475   Tr wtr 4752  WUnicwun 9522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-int 4476  df-tr 4753  df-wun 9524
This theorem is referenced by:  wunccl  9566
  Copyright terms: Public domain W3C validator