| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jad | Structured version Visualization version Unicode version | ||
| Description: Deduction form of ja 173. (Contributed by Scott Fenton, 13-Dec-2010.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| jad.1 |
|
| jad.2 |
|
| Ref | Expression |
|---|---|
| jad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jad.1 |
. . . 4
| |
| 2 | 1 | com12 32 |
. . 3
|
| 3 | jad.2 |
. . . 4
| |
| 4 | 3 | com12 32 |
. . 3
|
| 5 | 2, 4 | ja 173 |
. 2
|
| 6 | 5 | com12 32 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.6 182 pm2.65 184 merco2 1661 nfimdOLDOLD 1824 wereu2 5111 isfin7-2 9218 axpowndlem3 9421 suppssfz 12794 lo1bdd2 14255 pntlem3 25298 hbimtg 31712 arg-ax 32415 onsuct0 32440 ordcmp 32446 poimirlem26 33435 ax12indi 34229 ntrneiiso 38389 hbimpg 38770 |
| Copyright terms: Public domain | W3C validator |