MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jad Structured version   Visualization version   Unicode version

Theorem jad 174
Description: Deduction form of ja 173. (Contributed by Scott Fenton, 13-Dec-2010.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypotheses
Ref Expression
jad.1  |-  ( ph  ->  ( -.  ps  ->  th ) )
jad.2  |-  ( ph  ->  ( ch  ->  th )
)
Assertion
Ref Expression
jad  |-  ( ph  ->  ( ( ps  ->  ch )  ->  th )
)

Proof of Theorem jad
StepHypRef Expression
1 jad.1 . . . 4  |-  ( ph  ->  ( -.  ps  ->  th ) )
21com12 32 . . 3  |-  ( -. 
ps  ->  ( ph  ->  th ) )
3 jad.2 . . . 4  |-  ( ph  ->  ( ch  ->  th )
)
43com12 32 . . 3  |-  ( ch 
->  ( ph  ->  th )
)
52, 4ja 173 . 2  |-  ( ( ps  ->  ch )  ->  ( ph  ->  th )
)
65com12 32 1  |-  ( ph  ->  ( ( ps  ->  ch )  ->  th )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.6  182  pm2.65  184  merco2  1661  nfimdOLDOLD  1824  wereu2  5111  isfin7-2  9218  axpowndlem3  9421  suppssfz  12794  lo1bdd2  14255  pntlem3  25298  hbimtg  31712  arg-ax  32415  onsuct0  32440  ordcmp  32446  poimirlem26  33435  ax12indi  34229  ntrneiiso  38389  hbimpg  38770
  Copyright terms: Public domain W3C validator