| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordcmp | Structured version Visualization version Unicode version | ||
| Description: An ordinal topology is
compact iff the underlying set is its supremum
(union) only when the ordinal is |
| Ref | Expression |
|---|---|
| ordcmp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduni 6994 |
. . . 4
| |
| 2 | unizlim 5844 |
. . . . . 6
| |
| 3 | uni0b 4463 |
. . . . . . 7
| |
| 4 | 3 | orbi1i 542 |
. . . . . 6
|
| 5 | 2, 4 | syl6bb 276 |
. . . . 5
|
| 6 | 5 | biimpd 219 |
. . . 4
|
| 7 | 1, 6 | syl 17 |
. . 3
|
| 8 | sssn 4358 |
. . . . . . 7
| |
| 9 | 0ntop 20710 |
. . . . . . . . . . 11
| |
| 10 | cmptop 21198 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | mto 188 |
. . . . . . . . . 10
|
| 12 | eleq1 2689 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | mtbiri 317 |
. . . . . . . . 9
|
| 14 | 13 | pm2.21d 118 |
. . . . . . . 8
|
| 15 | id 22 |
. . . . . . . . . 10
| |
| 16 | df1o2 7572 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | syl6eqr 2674 |
. . . . . . . . 9
|
| 18 | 17 | a1d 25 |
. . . . . . . 8
|
| 19 | 14, 18 | jaoi 394 |
. . . . . . 7
|
| 20 | 8, 19 | sylbi 207 |
. . . . . 6
|
| 21 | 20 | a1i 11 |
. . . . 5
|
| 22 | ordtop 32435 |
. . . . . . . . . . 11
| |
| 23 | 22 | biimpd 219 |
. . . . . . . . . 10
|
| 24 | 23 | necon2bd 2810 |
. . . . . . . . 9
|
| 25 | cmptop 21198 |
. . . . . . . . . 10
| |
| 26 | 25 | con3i 150 |
. . . . . . . . 9
|
| 27 | 24, 26 | syl6 35 |
. . . . . . . 8
|
| 28 | 27 | a1dd 50 |
. . . . . . 7
|
| 29 | limsucncmp 32445 |
. . . . . . . . 9
| |
| 30 | eleq1 2689 |
. . . . . . . . . 10
| |
| 31 | 30 | notbid 308 |
. . . . . . . . 9
|
| 32 | 29, 31 | syl5ibr 236 |
. . . . . . . 8
|
| 33 | 32 | a1i 11 |
. . . . . . 7
|
| 34 | orduniorsuc 7030 |
. . . . . . 7
| |
| 35 | 28, 33, 34 | mpjaod 396 |
. . . . . 6
|
| 36 | pm2.21 120 |
. . . . . 6
| |
| 37 | 35, 36 | syl6 35 |
. . . . 5
|
| 38 | 21, 37 | jaod 395 |
. . . 4
|
| 39 | 38 | com23 86 |
. . 3
|
| 40 | 7, 39 | syl5d 73 |
. 2
|
| 41 | ordeleqon 6988 |
. . . . . . 7
| |
| 42 | unon 7031 |
. . . . . . . . . . 11
| |
| 43 | 42 | eqcomi 2631 |
. . . . . . . . . 10
|
| 44 | 43 | unieqi 4445 |
. . . . . . . . 9
|
| 45 | unieq 4444 |
. . . . . . . . 9
| |
| 46 | 45 | unieqd 4446 |
. . . . . . . . 9
|
| 47 | 44, 45, 46 | 3eqtr4a 2682 |
. . . . . . . 8
|
| 48 | 47 | orim2i 540 |
. . . . . . 7
|
| 49 | 41, 48 | sylbi 207 |
. . . . . 6
|
| 50 | 49 | orcomd 403 |
. . . . 5
|
| 51 | 50 | ord 392 |
. . . 4
|
| 52 | unieq 4444 |
. . . . . . 7
| |
| 53 | 52 | con3i 150 |
. . . . . 6
|
| 54 | 34 | ord 392 |
. . . . . 6
|
| 55 | 53, 54 | syl5 34 |
. . . . 5
|
| 56 | orduniorsuc 7030 |
. . . . . . . 8
| |
| 57 | 1, 56 | syl 17 |
. . . . . . 7
|
| 58 | 57 | ord 392 |
. . . . . 6
|
| 59 | suceq 5790 |
. . . . . 6
| |
| 60 | 58, 59 | syl6 35 |
. . . . 5
|
| 61 | eqtr 2641 |
. . . . . 6
| |
| 62 | 61 | ex 450 |
. . . . 5
|
| 63 | 55, 60, 62 | syl6c 70 |
. . . 4
|
| 64 | onuni 6993 |
. . . . 5
| |
| 65 | onuni 6993 |
. . . . 5
| |
| 66 | onsucsuccmp 32443 |
. . . . 5
| |
| 67 | eleq1a 2696 |
. . . . 5
| |
| 68 | 64, 65, 66, 67 | 4syl 19 |
. . . 4
|
| 69 | 51, 63, 68 | syl6c 70 |
. . 3
|
| 70 | id 22 |
. . . . . 6
| |
| 71 | 70, 16 | syl6eq 2672 |
. . . . 5
|
| 72 | 0cmp 21197 |
. . . . 5
| |
| 73 | 71, 72 | syl6eqel 2709 |
. . . 4
|
| 74 | 73 | a1i 11 |
. . 3
|
| 75 | 69, 74 | jad 174 |
. 2
|
| 76 | 40, 75 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-er 7742 df-en 7956 df-fin 7959 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cmp 21190 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |