| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kmlem14 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004.) |
| Ref | Expression |
|---|---|
| kmlem14.1 |
|
| kmlem14.2 |
|
| kmlem14.3 |
|
| Ref | Expression |
|---|---|
| kmlem14 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 2856 |
. . . . . 6
| |
| 2 | ineq1 3807 |
. . . . . . 7
| |
| 3 | 2 | eleq2d 2687 |
. . . . . 6
|
| 4 | 1, 3 | anbi12d 747 |
. . . . 5
|
| 5 | 4 | rexbidv 3052 |
. . . 4
|
| 6 | 5 | raleqbi1dv 3146 |
. . 3
|
| 7 | 6 | cbvrexv 3172 |
. 2
|
| 8 | df-rex 2918 |
. 2
| |
| 9 | eleq1 2689 |
. . . . . . . . 9
| |
| 10 | 9 | anbi2d 740 |
. . . . . . . 8
|
| 11 | 10 | rexbidv 3052 |
. . . . . . 7
|
| 12 | 11 | cbvralv 3171 |
. . . . . 6
|
| 13 | df-ral 2917 |
. . . . . 6
| |
| 14 | 12, 13 | bitri 264 |
. . . . 5
|
| 15 | 14 | anbi2i 730 |
. . . 4
|
| 16 | 19.28v 1909 |
. . . 4
| |
| 17 | neeq2 2857 |
. . . . . . . . . . . 12
| |
| 18 | ineq2 3808 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | eleq2d 2687 |
. . . . . . . . . . . 12
|
| 20 | 17, 19 | anbi12d 747 |
. . . . . . . . . . 11
|
| 21 | 20 | cbvrexv 3172 |
. . . . . . . . . 10
|
| 22 | df-rex 2918 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | bitri 264 |
. . . . . . . . 9
|
| 24 | 23 | imbi2i 326 |
. . . . . . . 8
|
| 25 | 19.37v 1910 |
. . . . . . . 8
| |
| 26 | 24, 25 | bitr4i 267 |
. . . . . . 7
|
| 27 | 26 | anbi2i 730 |
. . . . . 6
|
| 28 | 19.42v 1918 |
. . . . . 6
| |
| 29 | 19.3v 1897 |
. . . . . . . 8
| |
| 30 | kmlem14.1 |
. . . . . . . . . 10
| |
| 31 | elin 3796 |
. . . . . . . . . . . . . 14
| |
| 32 | 31 | baibr 945 |
. . . . . . . . . . . . 13
|
| 33 | 32 | anbi2d 740 |
. . . . . . . . . . . 12
|
| 34 | anass 681 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34 | syl6bb 276 |
. . . . . . . . . . 11
|
| 36 | 35 | pm5.74i 260 |
. . . . . . . . . 10
|
| 37 | 30, 36 | bitri 264 |
. . . . . . . . 9
|
| 38 | 37 | anbi2i 730 |
. . . . . . . 8
|
| 39 | 29, 38 | bitr2i 265 |
. . . . . . 7
|
| 40 | 39 | exbii 1774 |
. . . . . 6
|
| 41 | 27, 28, 40 | 3bitr2i 288 |
. . . . 5
|
| 42 | 41 | albii 1747 |
. . . 4
|
| 43 | 15, 16, 42 | 3bitr2i 288 |
. . 3
|
| 44 | 43 | exbii 1774 |
. 2
|
| 45 | 7, 8, 44 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 |
| This theorem is referenced by: kmlem16 8987 |
| Copyright terms: Public domain | W3C validator |