| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kmlem15 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004.) |
| Ref | Expression |
|---|---|
| kmlem14.1 |
|
| kmlem14.2 |
|
| kmlem14.3 |
|
| Ref | Expression |
|---|---|
| kmlem15 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem14.3 |
. . . 4
| |
| 2 | nfv 1843 |
. . . . . . 7
| |
| 3 | 2 | eu1 2510 |
. . . . . 6
|
| 4 | elin 3796 |
. . . . . . . . 9
| |
| 5 | clelsb3 2729 |
. . . . . . . . . . . 12
| |
| 6 | elin 3796 |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | bitri 264 |
. . . . . . . . . . 11
|
| 8 | equcom 1945 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | imbi12i 340 |
. . . . . . . . . 10
|
| 10 | 9 | albii 1747 |
. . . . . . . . 9
|
| 11 | 4, 10 | anbi12i 733 |
. . . . . . . 8
|
| 12 | 19.28v 1909 |
. . . . . . . 8
| |
| 13 | 11, 12 | bitr4i 267 |
. . . . . . 7
|
| 14 | 13 | exbii 1774 |
. . . . . 6
|
| 15 | 3, 14 | bitri 264 |
. . . . 5
|
| 16 | 15 | ralbii 2980 |
. . . 4
|
| 17 | df-ral 2917 |
. . . . 5
| |
| 18 | kmlem14.2 |
. . . . . . . . . 10
| |
| 19 | 18 | albii 1747 |
. . . . . . . . 9
|
| 20 | 19.21v 1868 |
. . . . . . . . 9
| |
| 21 | 19, 20 | bitri 264 |
. . . . . . . 8
|
| 22 | 21 | exbii 1774 |
. . . . . . 7
|
| 23 | 19.37v 1910 |
. . . . . . 7
| |
| 24 | 22, 23 | bitri 264 |
. . . . . 6
|
| 25 | 24 | albii 1747 |
. . . . 5
|
| 26 | 17, 25 | bitr4i 267 |
. . . 4
|
| 27 | 1, 16, 26 | 3bitri 286 |
. . 3
|
| 28 | 27 | anbi2i 730 |
. 2
|
| 29 | 19.28v 1909 |
. 2
| |
| 30 | 19.28v 1909 |
. . . . 5
| |
| 31 | 30 | exbii 1774 |
. . . 4
|
| 32 | 19.42v 1918 |
. . . 4
| |
| 33 | 31, 32 | bitr2i 265 |
. . 3
|
| 34 | 33 | albii 1747 |
. 2
|
| 35 | 28, 29, 34 | 3bitr2i 288 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-in 3581 |
| This theorem is referenced by: kmlem16 8987 |
| Copyright terms: Public domain | W3C validator |