| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kmlem13 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 5-Apr-2004.) |
| Ref | Expression |
|---|---|
| kmlem9.1 |
|
| Ref | Expression |
|---|---|
| kmlem13 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem1 8972 |
. . 3
| |
| 2 | raleq 3138 |
. . . . . . 7
| |
| 3 | 2 | raleqbi1dv 3146 |
. . . . . 6
|
| 4 | raleq 3138 |
. . . . . . 7
| |
| 5 | 4 | exbidv 1850 |
. . . . . 6
|
| 6 | 3, 5 | imbi12d 334 |
. . . . 5
|
| 7 | 6 | cbvalv 2273 |
. . . 4
|
| 8 | kmlem9.1 |
. . . . . . 7
| |
| 9 | 8 | kmlem10 8981 |
. . . . . 6
|
| 10 | ineq2 3808 |
. . . . . . . . . . . 12
| |
| 11 | 10 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 12 | 11 | eubidv 2490 |
. . . . . . . . . 10
|
| 13 | 12 | imbi2d 330 |
. . . . . . . . 9
|
| 14 | 13 | ralbidv 2986 |
. . . . . . . 8
|
| 15 | 14 | cbvexv 2275 |
. . . . . . 7
|
| 16 | kmlem3 8974 |
. . . . . . . . . . 11
| |
| 17 | ralinexa 2997 |
. . . . . . . . . . . 12
| |
| 18 | 17 | rexbii 3041 |
. . . . . . . . . . 11
|
| 19 | rexnal 2995 |
. . . . . . . . . . 11
| |
| 20 | 16, 18, 19 | 3bitri 286 |
. . . . . . . . . 10
|
| 21 | 20 | ralbii 2980 |
. . . . . . . . 9
|
| 22 | ralnex 2992 |
. . . . . . . . 9
| |
| 23 | 21, 22 | bitri 264 |
. . . . . . . 8
|
| 24 | 8 | kmlem12 8983 |
. . . . . . . . . . 11
|
| 25 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 26 | 25 | inex1 4799 |
. . . . . . . . . . . 12
|
| 27 | ineq2 3808 |
. . . . . . . . . . . . . . . 16
| |
| 28 | 27 | eleq2d 2687 |
. . . . . . . . . . . . . . 15
|
| 29 | 28 | eubidv 2490 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | imbi2d 330 |
. . . . . . . . . . . . 13
|
| 31 | 30 | ralbidv 2986 |
. . . . . . . . . . . 12
|
| 32 | 26, 31 | spcev 3300 |
. . . . . . . . . . 11
|
| 33 | 24, 32 | syl6 35 |
. . . . . . . . . 10
|
| 34 | 33 | exlimdv 1861 |
. . . . . . . . 9
|
| 35 | 34 | com12 32 |
. . . . . . . 8
|
| 36 | 23, 35 | syl5bir 233 |
. . . . . . 7
|
| 37 | 15, 36 | sylbi 207 |
. . . . . 6
|
| 38 | 9, 37 | syl 17 |
. . . . 5
|
| 39 | 38 | alrimiv 1855 |
. . . 4
|
| 40 | 7, 39 | sylbi 207 |
. . 3
|
| 41 | 1, 40 | syl 17 |
. 2
|
| 42 | kmlem7 8978 |
. . . . 5
| |
| 43 | 42 | imim1i 63 |
. . . 4
|
| 44 | biimt 350 |
. . . . . . . . 9
| |
| 45 | 44 | ralimi 2952 |
. . . . . . . 8
|
| 46 | ralbi 3068 |
. . . . . . . 8
| |
| 47 | 45, 46 | syl 17 |
. . . . . . 7
|
| 48 | 47 | exbidv 1850 |
. . . . . 6
|
| 49 | 48 | adantr 481 |
. . . . 5
|
| 50 | 49 | pm5.74i 260 |
. . . 4
|
| 51 | 43, 50 | sylibr 224 |
. . 3
|
| 52 | 51 | alimi 1739 |
. 2
|
| 53 | 41, 52 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: dfackm 8988 |
| Copyright terms: Public domain | W3C validator |