MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth Structured version   Visualization version   Unicode version

Theorem canth 6608
Description: No set  A is equinumerous to its power set (Cantor's theorem), i.e. no function can map  A it onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 8113. Note that  A must be a set: this theorem does not hold when  A is too large to be a set; see ncanth 6609 for a counterexample. (Use nex 1731 if you want the form  -.  E. f f : A -onto-> ~P A.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Hypothesis
Ref Expression
canth.1  |-  A  e. 
_V
Assertion
Ref Expression
canth  |-  -.  F : A -onto-> ~P A

Proof of Theorem canth
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . 4  |-  { x  e.  A  |  -.  x  e.  ( F `  x ) }  C_  A
2 canth.1 . . . . 5  |-  A  e. 
_V
32elpw2 4828 . . . 4  |-  ( { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ~P A  <->  { x  e.  A  |  -.  x  e.  ( F `  x ) }  C_  A )
41, 3mpbir 221 . . 3  |-  { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ~P A
5 forn 6118 . . 3  |-  ( F : A -onto-> ~P A  ->  ran  F  =  ~P A )
64, 5syl5eleqr 2708 . 2  |-  ( F : A -onto-> ~P A  ->  { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ran  F
)
7 id 22 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
8 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
97, 8eleq12d 2695 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  ( F `
 x )  <->  y  e.  ( F `  y ) ) )
109notbid 308 . . . . . . . 8  |-  ( x  =  y  ->  ( -.  x  e.  ( F `  x )  <->  -.  y  e.  ( F `
 y ) ) )
1110elrab 3363 . . . . . . 7  |-  ( y  e.  { x  e.  A  |  -.  x  e.  ( F `  x
) }  <->  ( y  e.  A  /\  -.  y  e.  ( F `  y
) ) )
1211baibr 945 . . . . . 6  |-  ( y  e.  A  ->  ( -.  y  e.  ( F `  y )  <->  y  e.  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
13 nbbn 373 . . . . . 6  |-  ( ( -.  y  e.  ( F `  y )  <-> 
y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) } )  <->  -.  ( y  e.  ( F `  y )  <-> 
y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) } ) )
1412, 13sylib 208 . . . . 5  |-  ( y  e.  A  ->  -.  ( y  e.  ( F `  y )  <-> 
y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) } ) )
15 eleq2 2690 . . . . 5  |-  ( ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) }  ->  (
y  e.  ( F `
 y )  <->  y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) } ) )
1614, 15nsyl 135 . . . 4  |-  ( y  e.  A  ->  -.  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } )
1716nrex 3000 . . 3  |-  -.  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x ) }
18 fofn 6117 . . . 4  |-  ( F : A -onto-> ~P A  ->  F  Fn  A )
19 fvelrnb 6243 . . . 4  |-  ( F  Fn  A  ->  ( { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
2018, 19syl 17 . . 3  |-  ( F : A -onto-> ~P A  ->  ( { x  e.  A  |  -.  x  e.  ( F `  x
) }  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
2117, 20mtbiri 317 . 2  |-  ( F : A -onto-> ~P A  ->  -.  { x  e.  A  |  -.  x  e.  ( F `  x
) }  e.  ran  F )
226, 21pm2.65i 185 1  |-  -.  F : A -onto-> ~P A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   ran crn 5115    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896
This theorem is referenced by:  canth2  8113  canthwdom  8484
  Copyright terms: Public domain W3C validator