Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem8 Structured version   Visualization version   Unicode version

Theorem lcfrlem8 36838
Description: Lemma for lcf1o 36840 and lcfr 36874. (Contributed by NM, 21-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h  |-  H  =  ( LHyp `  K
)
lcf1o.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcf1o.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcf1o.v  |-  V  =  ( Base `  U
)
lcf1o.a  |-  .+  =  ( +g  `  U )
lcf1o.t  |-  .x.  =  ( .s `  U )
lcf1o.s  |-  S  =  (Scalar `  U )
lcf1o.r  |-  R  =  ( Base `  S
)
lcf1o.z  |-  .0.  =  ( 0g `  U )
lcf1o.f  |-  F  =  (LFnl `  U )
lcf1o.l  |-  L  =  (LKer `  U )
lcf1o.d  |-  D  =  (LDual `  U )
lcf1o.q  |-  Q  =  ( 0g `  D
)
lcf1o.c  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
lcf1o.j  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
lcflo.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfrlem8.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
Assertion
Ref Expression
lcfrlem8  |-  ( ph  ->  ( J `  X
)  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) ) )
Distinct variable groups:    x, w,  ._|_    x,  .0.    x, v, V    x,  .x.    v, k, w, x, X    x,  .+    x, R
Allowed substitution hints:    ph( x, w, v, f, k)    C( x, w, v, f, k)    D( x, w, v, f, k)    .+ ( w, v, f, k)    Q( x, w, v, f, k)    R( w, v, f, k)    S( x, w, v, f, k)    .x. ( w, v, f, k)    U( x, w, v, f, k)    F( x, w, v, f, k)    H( x, w, v, f, k)    J( x, w, v, f, k)    K( x, w, v, f, k)    L( x, w, v, f, k)    ._|_ ( v, f, k)    V( w, f, k)    W( x, w, v, f, k)    X( f)    .0. ( w, v, f, k)

Proof of Theorem lcfrlem8
StepHypRef Expression
1 lcfrlem8.x . 2  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
2 sneq 4187 . . . . . . 7  |-  ( x  =  X  ->  { x }  =  { X } )
32fveq2d 6195 . . . . . 6  |-  ( x  =  X  ->  (  ._|_  `  { x }
)  =  (  ._|_  `  { X } ) )
4 oveq2 6658 . . . . . . . 8  |-  ( x  =  X  ->  (
k  .x.  x )  =  ( k  .x.  X ) )
54oveq2d 6666 . . . . . . 7  |-  ( x  =  X  ->  (
w  .+  ( k  .x.  x ) )  =  ( w  .+  (
k  .x.  X )
) )
65eqeq2d 2632 . . . . . 6  |-  ( x  =  X  ->  (
v  =  ( w 
.+  ( k  .x.  x ) )  <->  v  =  ( w  .+  ( k 
.x.  X ) ) ) )
73, 6rexeqbidv 3153 . . . . 5  |-  ( x  =  X  ->  ( E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) )  <->  E. w  e.  (  ._|_  `  { X }
) v  =  ( w  .+  ( k 
.x.  X ) ) ) )
87riotabidv 6613 . . . 4  |-  ( x  =  X  ->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w 
.+  ( k  .x.  x ) ) )  =  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) )
98mpteq2dv 4745 . . 3  |-  ( x  =  X  ->  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { X }
) v  =  ( w  .+  ( k 
.x.  X ) ) ) ) )
10 lcf1o.j . . 3  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
11 lcf1o.v . . . . 5  |-  V  =  ( Base `  U
)
12 fvex 6201 . . . . 5  |-  ( Base `  U )  e.  _V
1311, 12eqeltri 2697 . . . 4  |-  V  e. 
_V
1413mptex 6486 . . 3  |-  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) )  e. 
_V
159, 10, 14fvmpt 6282 . 2  |-  ( X  e.  ( V  \  {  .0.  } )  -> 
( J `  X
)  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) ) )
161, 15syl 17 1  |-  ( ph  ->  ( J `  X
)  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571   {csn 4177    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   0gc0g 16100  LFnlclfn 34344  LKerclk 34372  LDualcld 34410   HLchlt 34637   LHypclh 35270   DVecHcdvh 36367   ocHcoch 36636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653
This theorem is referenced by:  lcfrlem9  36839  lcfrlem10  36841  lcfrlem11  36842
  Copyright terms: Public domain W3C validator