Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoop Structured version   Visualization version   Unicode version

Theorem lcoop 42200
Description: A linear combination as operation. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lcoop.b  |-  B  =  ( Base `  M
)
lcoop.s  |-  S  =  (Scalar `  M )
lcoop.r  |-  R  =  ( Base `  S
)
Assertion
Ref Expression
lcoop  |-  ( ( M  e.  X  /\  V  e.  ~P B
)  ->  ( M LinCo  V )  =  { c  e.  B  |  E. s  e.  ( R  ^m  V ) ( s finSupp 
( 0g `  S
)  /\  c  =  ( s ( linC  `  M ) V ) ) } )
Distinct variable groups:    B, c    M, c, s    R, c, s    V, c, s
Allowed substitution hints:    B( s)    S( s, c)    X( s, c)

Proof of Theorem lcoop
Dummy variables  m  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . 3  |-  ( M  e.  X  ->  M  e.  _V )
21adantr 481 . 2  |-  ( ( M  e.  X  /\  V  e.  ~P B
)  ->  M  e.  _V )
3 lcoop.b . . . . . 6  |-  B  =  ( Base `  M
)
43pweqi 4162 . . . . 5  |-  ~P B  =  ~P ( Base `  M
)
54eleq2i 2693 . . . 4  |-  ( V  e.  ~P B  <->  V  e.  ~P ( Base `  M
) )
65biimpi 206 . . 3  |-  ( V  e.  ~P B  ->  V  e.  ~P ( Base `  M ) )
76adantl 482 . 2  |-  ( ( M  e.  X  /\  V  e.  ~P B
)  ->  V  e.  ~P ( Base `  M
) )
8 fvex 6201 . . . 4  |-  ( Base `  M )  e.  _V
93, 8eqeltri 2697 . . 3  |-  B  e. 
_V
10 rabexg 4812 . . 3  |-  ( B  e.  _V  ->  { c  e.  B  |  E. s  e.  ( R  ^m  V ) ( s finSupp 
( 0g `  S
)  /\  c  =  ( s ( linC  `  M ) V ) ) }  e.  _V )
119, 10mp1i 13 . 2  |-  ( ( M  e.  X  /\  V  e.  ~P B
)  ->  { c  e.  B  |  E. s  e.  ( R  ^m  V ) ( s finSupp 
( 0g `  S
)  /\  c  =  ( s ( linC  `  M ) V ) ) }  e.  _V )
12 fveq2 6191 . . . . . 6  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
1312, 3syl6eqr 2674 . . . . 5  |-  ( m  =  M  ->  ( Base `  m )  =  B )
1413adantr 481 . . . 4  |-  ( ( m  =  M  /\  v  =  V )  ->  ( Base `  m
)  =  B )
15 fveq2 6191 . . . . . . . . 9  |-  ( m  =  M  ->  (Scalar `  m )  =  (Scalar `  M ) )
1615fveq2d 6195 . . . . . . . 8  |-  ( m  =  M  ->  ( Base `  (Scalar `  m
) )  =  (
Base `  (Scalar `  M
) ) )
1716adantr 481 . . . . . . 7  |-  ( ( m  =  M  /\  v  =  V )  ->  ( Base `  (Scalar `  m ) )  =  ( Base `  (Scalar `  M ) ) )
18 lcoop.r . . . . . . . 8  |-  R  =  ( Base `  S
)
19 lcoop.s . . . . . . . . 9  |-  S  =  (Scalar `  M )
2019fveq2i 6194 . . . . . . . 8  |-  ( Base `  S )  =  (
Base `  (Scalar `  M
) )
2118, 20eqtri 2644 . . . . . . 7  |-  R  =  ( Base `  (Scalar `  M ) )
2217, 21syl6eqr 2674 . . . . . 6  |-  ( ( m  =  M  /\  v  =  V )  ->  ( Base `  (Scalar `  m ) )  =  R )
23 simpr 477 . . . . . 6  |-  ( ( m  =  M  /\  v  =  V )  ->  v  =  V )
2422, 23oveq12d 6668 . . . . 5  |-  ( ( m  =  M  /\  v  =  V )  ->  ( ( Base `  (Scalar `  m ) )  ^m  v )  =  ( R  ^m  V ) )
2515fveq2d 6195 . . . . . . . . 9  |-  ( m  =  M  ->  ( 0g `  (Scalar `  m
) )  =  ( 0g `  (Scalar `  M ) ) )
2619a1i 11 . . . . . . . . . . 11  |-  ( m  =  M  ->  S  =  (Scalar `  M )
)
2726eqcomd 2628 . . . . . . . . . 10  |-  ( m  =  M  ->  (Scalar `  M )  =  S )
2827fveq2d 6195 . . . . . . . . 9  |-  ( m  =  M  ->  ( 0g `  (Scalar `  M
) )  =  ( 0g `  S ) )
2925, 28eqtrd 2656 . . . . . . . 8  |-  ( m  =  M  ->  ( 0g `  (Scalar `  m
) )  =  ( 0g `  S ) )
3029adantr 481 . . . . . . 7  |-  ( ( m  =  M  /\  v  =  V )  ->  ( 0g `  (Scalar `  m ) )  =  ( 0g `  S
) )
3130breq2d 4665 . . . . . 6  |-  ( ( m  =  M  /\  v  =  V )  ->  ( s finSupp  ( 0g
`  (Scalar `  m )
)  <->  s finSupp  ( 0g `  S ) ) )
32 fveq2 6191 . . . . . . . . 9  |-  ( m  =  M  ->  ( linC  `  m )  =  ( linC  `  M ) )
3332adantr 481 . . . . . . . 8  |-  ( ( m  =  M  /\  v  =  V )  ->  ( linC  `  m )  =  ( linC  `  M ) )
34 eqidd 2623 . . . . . . . 8  |-  ( ( m  =  M  /\  v  =  V )  ->  s  =  s )
3533, 34, 23oveq123d 6671 . . . . . . 7  |-  ( ( m  =  M  /\  v  =  V )  ->  ( s ( linC  `  m ) v )  =  ( s ( linC  `  M ) V ) )
3635eqeq2d 2632 . . . . . 6  |-  ( ( m  =  M  /\  v  =  V )  ->  ( c  =  ( s ( linC  `  m
) v )  <->  c  =  ( s ( linC  `  M ) V ) ) )
3731, 36anbi12d 747 . . . . 5  |-  ( ( m  =  M  /\  v  =  V )  ->  ( ( s finSupp  ( 0g `  (Scalar `  m
) )  /\  c  =  ( s ( linC  `  m ) v ) )  <->  ( s finSupp  ( 0g `  S )  /\  c  =  ( s
( linC  `  M ) V ) ) ) )
3824, 37rexeqbidv 3153 . . . 4  |-  ( ( m  =  M  /\  v  =  V )  ->  ( E. s  e.  ( ( Base `  (Scalar `  m ) )  ^m  v ) ( s finSupp 
( 0g `  (Scalar `  m ) )  /\  c  =  ( s
( linC  `  m )
v ) )  <->  E. s  e.  ( R  ^m  V
) ( s finSupp  ( 0g `  S )  /\  c  =  ( s
( linC  `  M ) V ) ) ) )
3914, 38rabeqbidv 3195 . . 3  |-  ( ( m  =  M  /\  v  =  V )  ->  { c  e.  (
Base `  m )  |  E. s  e.  ( ( Base `  (Scalar `  m ) )  ^m  v ) ( s finSupp 
( 0g `  (Scalar `  m ) )  /\  c  =  ( s
( linC  `  m )
v ) ) }  =  { c  e.  B  |  E. s  e.  ( R  ^m  V
) ( s finSupp  ( 0g `  S )  /\  c  =  ( s
( linC  `  M ) V ) ) } )
4012pweqd 4163 . . 3  |-  ( m  =  M  ->  ~P ( Base `  m )  =  ~P ( Base `  M
) )
41 df-lco 42196 . . 3  |- LinCo  =  ( m  e.  _V , 
v  e.  ~P ( Base `  m )  |->  { c  e.  ( Base `  m )  |  E. s  e.  ( ( Base `  (Scalar `  m
) )  ^m  v
) ( s finSupp  ( 0g `  (Scalar `  m
) )  /\  c  =  ( s ( linC  `  m ) v ) ) } )
4239, 40, 41ovmpt2x 6789 . 2  |-  ( ( M  e.  _V  /\  V  e.  ~P ( Base `  M )  /\  { c  e.  B  |  E. s  e.  ( R  ^m  V ) ( s finSupp  ( 0g `  S )  /\  c  =  ( s ( linC  `  M ) V ) ) }  e.  _V )  ->  ( M LinCo  V
)  =  { c  e.  B  |  E. s  e.  ( R  ^m  V ) ( s finSupp 
( 0g `  S
)  /\  c  =  ( s ( linC  `  M ) V ) ) } )
432, 7, 11, 42syl3anc 1326 1  |-  ( ( M  e.  X  /\  V  e.  ~P B
)  ->  ( M LinCo  V )  =  { c  e.  B  |  E. s  e.  ( R  ^m  V ) ( s finSupp 
( 0g `  S
)  /\  c  =  ( s ( linC  `  M ) V ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200   ~Pcpw 4158   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   finSupp cfsupp 8275   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   linC clinc 42193   LinCo clinco 42194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-lco 42196
This theorem is referenced by:  lcoval  42201  lco0  42216
  Copyright terms: Public domain W3C validator