Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoval Structured version   Visualization version   Unicode version

Theorem lcoval 42201
Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lcoop.b  |-  B  =  ( Base `  M
)
lcoop.s  |-  S  =  (Scalar `  M )
lcoop.r  |-  R  =  ( Base `  S
)
Assertion
Ref Expression
lcoval  |-  ( ( M  e.  X  /\  V  e.  ~P B
)  ->  ( C  e.  ( M LinCo  V )  <-> 
( C  e.  B  /\  E. s  e.  ( R  ^m  V ) ( s finSupp  ( 0g
`  S )  /\  C  =  ( s
( linC  `  M ) V ) ) ) ) )
Distinct variable groups:    M, s    R, s    V, s    C, s
Allowed substitution hints:    B( s)    S( s)    X( s)

Proof of Theorem lcoval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 lcoop.b . . . 4  |-  B  =  ( Base `  M
)
2 lcoop.s . . . 4  |-  S  =  (Scalar `  M )
3 lcoop.r . . . 4  |-  R  =  ( Base `  S
)
41, 2, 3lcoop 42200 . . 3  |-  ( ( M  e.  X  /\  V  e.  ~P B
)  ->  ( M LinCo  V )  =  { c  e.  B  |  E. s  e.  ( R  ^m  V ) ( s finSupp 
( 0g `  S
)  /\  c  =  ( s ( linC  `  M ) V ) ) } )
54eleq2d 2687 . 2  |-  ( ( M  e.  X  /\  V  e.  ~P B
)  ->  ( C  e.  ( M LinCo  V )  <-> 
C  e.  { c  e.  B  |  E. s  e.  ( R  ^m  V ) ( s finSupp 
( 0g `  S
)  /\  c  =  ( s ( linC  `  M ) V ) ) } ) )
6 eqeq1 2626 . . . . 5  |-  ( c  =  C  ->  (
c  =  ( s ( linC  `  M ) V )  <->  C  =  ( s ( linC  `  M ) V ) ) )
76anbi2d 740 . . . 4  |-  ( c  =  C  ->  (
( s finSupp  ( 0g `  S )  /\  c  =  ( s ( linC  `  M ) V ) )  <->  ( s finSupp  ( 0g `  S )  /\  C  =  ( s
( linC  `  M ) V ) ) ) )
87rexbidv 3052 . . 3  |-  ( c  =  C  ->  ( E. s  e.  ( R  ^m  V ) ( s finSupp  ( 0g `  S )  /\  c  =  ( s ( linC  `  M ) V ) )  <->  E. s  e.  ( R  ^m  V ) ( s finSupp  ( 0g
`  S )  /\  C  =  ( s
( linC  `  M ) V ) ) ) )
98elrab 3363 . 2  |-  ( C  e.  { c  e.  B  |  E. s  e.  ( R  ^m  V
) ( s finSupp  ( 0g `  S )  /\  c  =  ( s
( linC  `  M ) V ) ) }  <-> 
( C  e.  B  /\  E. s  e.  ( R  ^m  V ) ( s finSupp  ( 0g
`  S )  /\  C  =  ( s
( linC  `  M ) V ) ) ) )
105, 9syl6bb 276 1  |-  ( ( M  e.  X  /\  V  e.  ~P B
)  ->  ( C  e.  ( M LinCo  V )  <-> 
( C  e.  B  /\  E. s  e.  ( R  ^m  V ) ( s finSupp  ( 0g
`  S )  /\  C  =  ( s
( linC  `  M ) V ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   ~Pcpw 4158   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   finSupp cfsupp 8275   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   linC clinc 42193   LinCo clinco 42194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-lco 42196
This theorem is referenced by:  lcoel0  42217  lincsumcl  42220  lincscmcl  42221  lincolss  42223  ellcoellss  42224  lcoss  42225  lindslinindsimp1  42246  lindslinindsimp2  42252
  Copyright terms: Public domain W3C validator