Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflinc2 Structured version   Visualization version   Unicode version

Theorem dflinc2 42199
Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.)
Assertion
Ref Expression
dflinc2  |- linC  =  ( m  e.  _V  |->  ( s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
) ,  v  e. 
~P ( Base `  m
)  |->  ( m  gsumg  ( s  oF ( .s
`  m ) (  _I  |`  v )
) ) ) )
Distinct variable group:    m, s, v

Proof of Theorem dflinc2
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 df-linc 42195 . 2  |- linC  =  ( m  e.  _V  |->  ( s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
) ,  v  e. 
~P ( Base `  m
)  |->  ( m  gsumg  ( i  e.  v  |->  ( ( s `  i ) ( .s `  m
) i ) ) ) ) )
2 elmapfn 7880 . . . . . . . 8  |-  ( s  e.  ( ( Base `  (Scalar `  m )
)  ^m  v )  ->  s  Fn  v )
32adantr 481 . . . . . . 7  |-  ( ( s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
)  /\  v  e.  ~P ( Base `  m
) )  ->  s  Fn  v )
4 fnresi 6008 . . . . . . . 8  |-  (  _I  |`  v )  Fn  v
54a1i 11 . . . . . . 7  |-  ( ( s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
)  /\  v  e.  ~P ( Base `  m
) )  ->  (  _I  |`  v )  Fn  v )
6 vex 3203 . . . . . . . 8  |-  v  e. 
_V
76a1i 11 . . . . . . 7  |-  ( ( s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
)  /\  v  e.  ~P ( Base `  m
) )  ->  v  e.  _V )
8 inidm 3822 . . . . . . 7  |-  ( v  i^i  v )  =  v
9 eqidd 2623 . . . . . . 7  |-  ( ( ( s  e.  ( ( Base `  (Scalar `  m ) )  ^m  v )  /\  v  e.  ~P ( Base `  m
) )  /\  i  e.  v )  ->  (
s `  i )  =  ( s `  i ) )
10 fvresi 6439 . . . . . . . 8  |-  ( i  e.  v  ->  (
(  _I  |`  v
) `  i )  =  i )
1110adantl 482 . . . . . . 7  |-  ( ( ( s  e.  ( ( Base `  (Scalar `  m ) )  ^m  v )  /\  v  e.  ~P ( Base `  m
) )  /\  i  e.  v )  ->  (
(  _I  |`  v
) `  i )  =  i )
123, 5, 7, 7, 8, 9, 11offval 6904 . . . . . 6  |-  ( ( s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
)  /\  v  e.  ~P ( Base `  m
) )  ->  (
s  oF ( .s `  m ) (  _I  |`  v
) )  =  ( i  e.  v  |->  ( ( s `  i
) ( .s `  m ) i ) ) )
1312eqcomd 2628 . . . . 5  |-  ( ( s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
)  /\  v  e.  ~P ( Base `  m
) )  ->  (
i  e.  v  |->  ( ( s `  i
) ( .s `  m ) i ) )  =  ( s  oF ( .s
`  m ) (  _I  |`  v )
) )
1413oveq2d 6666 . . . 4  |-  ( ( s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
)  /\  v  e.  ~P ( Base `  m
) )  ->  (
m  gsumg  ( i  e.  v 
|->  ( ( s `  i ) ( .s
`  m ) i ) ) )  =  ( m  gsumg  ( s  oF ( .s `  m
) (  _I  |`  v
) ) ) )
1514mpt2eq3ia 6720 . . 3  |-  ( s  e.  ( ( Base `  (Scalar `  m )
)  ^m  v ) ,  v  e.  ~P ( Base `  m )  |->  ( m  gsumg  ( i  e.  v 
|->  ( ( s `  i ) ( .s
`  m ) i ) ) ) )  =  ( s  e.  ( ( Base `  (Scalar `  m ) )  ^m  v ) ,  v  e.  ~P ( Base `  m )  |->  ( m 
gsumg  ( s  oF ( .s `  m
) (  _I  |`  v
) ) ) )
1615mpteq2i 4741 . 2  |-  ( m  e.  _V  |->  ( s  e.  ( ( Base `  (Scalar `  m )
)  ^m  v ) ,  v  e.  ~P ( Base `  m )  |->  ( m  gsumg  ( i  e.  v 
|->  ( ( s `  i ) ( .s
`  m ) i ) ) ) ) )  =  ( m  e.  _V  |->  ( s  e.  ( ( Base `  (Scalar `  m )
)  ^m  v ) ,  v  e.  ~P ( Base `  m )  |->  ( m  gsumg  ( s  oF ( .s `  m
) (  _I  |`  v
) ) ) ) )
171, 16eqtri 2644 1  |- linC  =  ( m  e.  _V  |->  ( s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
) ,  v  e. 
~P ( Base `  m
)  |->  ( m  gsumg  ( s  oF ( .s
`  m ) (  _I  |`  v )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   ~Pcpw 4158    |-> cmpt 4729    _I cid 5023    |` cres 5116    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895    ^m cmap 7857   Basecbs 15857  Scalarcsca 15944   .scvsca 15945    gsumg cgsu 16101   linC clinc 42193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-1st 7168  df-2nd 7169  df-map 7859  df-linc 42195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator