Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lenelioc Structured version   Visualization version   Unicode version

Theorem lenelioc 39763
Description: A real number smaller than or equal to the lower bound of a left open right closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
lenelioc.1  |-  ( ph  ->  A  e.  RR* )
lenelioc.2  |-  ( ph  ->  B  e.  RR* )
lenelioc.3  |-  ( ph  ->  C  e.  RR* )
lenelioc.4  |-  ( ph  ->  C  <_  A )
Assertion
Ref Expression
lenelioc  |-  ( ph  ->  -.  C  e.  ( A (,] B ) )

Proof of Theorem lenelioc
StepHypRef Expression
1 lenelioc.4 . . . 4  |-  ( ph  ->  C  <_  A )
2 lenelioc.3 . . . . 5  |-  ( ph  ->  C  e.  RR* )
3 lenelioc.1 . . . . 5  |-  ( ph  ->  A  e.  RR* )
42, 3xrlenltd 10104 . . . 4  |-  ( ph  ->  ( C  <_  A  <->  -.  A  <  C ) )
51, 4mpbid 222 . . 3  |-  ( ph  ->  -.  A  <  C
)
65intn3an2d 1443 . 2  |-  ( ph  ->  -.  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )
7 lenelioc.2 . . 3  |-  ( ph  ->  B  e.  RR* )
8 elioc1 12217 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR*  /\  A  < 
C  /\  C  <_  B ) ) )
93, 7, 8syl2anc 693 . 2  |-  ( ph  ->  ( C  e.  ( A (,] B )  <-> 
( C  e.  RR*  /\  A  <  C  /\  C  <_  B ) ) )
106, 9mtbird 315 1  |-  ( ph  ->  -.  C  e.  ( A (,] B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ w3a 1037    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   RR*cxr 10073    < clt 10074    <_ cle 10075   (,]cioc 12176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-xr 10078  df-le 10080  df-ioc 12180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator