MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsfval Structured version   Visualization version   Unicode version

Theorem lgsfval 25027
Description: Value of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
Assertion
Ref Expression
lgsfval  |-  ( M  e.  NN  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Distinct variable groups:    A, n    n, M    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsfval
StepHypRef Expression
1 eleq1 2689 . . 3  |-  ( n  =  M  ->  (
n  e.  Prime  <->  M  e.  Prime ) )
2 eqeq1 2626 . . . . 5  |-  ( n  =  M  ->  (
n  =  2  <->  M  =  2 ) )
3 oveq1 6657 . . . . . . . . . 10  |-  ( n  =  M  ->  (
n  -  1 )  =  ( M  - 
1 ) )
43oveq1d 6665 . . . . . . . . 9  |-  ( n  =  M  ->  (
( n  -  1 )  /  2 )  =  ( ( M  -  1 )  / 
2 ) )
54oveq2d 6666 . . . . . . . 8  |-  ( n  =  M  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  =  ( A ^ (
( M  -  1 )  /  2 ) ) )
65oveq1d 6665 . . . . . . 7  |-  ( n  =  M  ->  (
( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  =  ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 ) )
7 id 22 . . . . . . 7  |-  ( n  =  M  ->  n  =  M )
86, 7oveq12d 6668 . . . . . 6  |-  ( n  =  M  ->  (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  =  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M ) )
98oveq1d 6665 . . . . 5  |-  ( n  =  M  ->  (
( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 )  =  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) )
102, 9ifbieq2d 4111 . . . 4  |-  ( n  =  M  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  =  if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) )
11 oveq1 6657 . . . 4  |-  ( n  =  M  ->  (
n  pCnt  N )  =  ( M  pCnt  N ) )
1210, 11oveq12d 6668 . . 3  |-  ( n  =  M  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  =  ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) ) ^ ( M 
pCnt  N ) ) )
131, 12ifbieq1d 4109 . 2  |-  ( n  =  M  ->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  =  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) ^
( M  pCnt  N
) ) ,  1 ) )
14 lgsval.1 . 2  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
15 ovex 6678 . . 3  |-  ( if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) ^
( M  pCnt  N
) )  e.  _V
16 1ex 10035 . . 3  |-  1  e.  _V
1715, 16ifex 4156 . 2  |-  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) ) ^ ( M 
pCnt  N ) ) ,  1 )  e.  _V
1813, 14, 17fvmpt 6282 1  |-  ( M  e.  NN  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ifcif 4086   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   7c7 11075   8c8 11076    mod cmo 12668   ^cexp 12860    || cdvds 14983   Primecprime 15385    pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  lgsval2lem  25032
  Copyright terms: Public domain W3C validator