MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval2lem Structured version   Visualization version   Unicode version

Theorem lgsval2lem 25032
Description: Lemma for lgsval2 25038. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
Assertion
Ref Expression
lgsval2lem  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( A  /L
N )  =  if ( N  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( N  -  1 )  /  2 ) )  +  1 )  mod  N )  - 
1 ) ) )
Distinct variable groups:    A, n    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsval2lem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prmz 15389 . . 3  |-  ( N  e.  Prime  ->  N  e.  ZZ )
2 lgsval.1 . . . 4  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
32lgsval 25026 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) ) )
41, 3sylan2 491 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( A  /L
N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) ) )
5 prmnn 15388 . . . . . 6  |-  ( N  e.  Prime  ->  N  e.  NN )
65adantl 482 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  N  e.  NN )
76nnne0d 11065 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  N  =/=  0 )
87neneqd 2799 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  -.  N  =  0
)
98iffalsed 4097 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) ) )
106nnnn0d 11351 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  N  e.  NN0 )
1110nn0ge0d 11354 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
0  <_  N )
12 0re 10040 . . . . . . . 8  |-  0  e.  RR
136nnred 11035 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  N  e.  RR )
14 lenlt 10116 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <_  N  <->  -.  N  <  0 ) )
1512, 13, 14sylancr 695 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( 0  <_  N  <->  -.  N  <  0 ) )
1611, 15mpbid 222 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  -.  N  <  0
)
1716intnanrd 963 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  -.  ( N  <  0  /\  A  <  0
) )
1817iffalsed 4097 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  1 )
1913, 11absidd 14161 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( abs `  N
)  =  N )
2019fveq2d 6195 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
(  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  =  (  seq 1 (  x.  ,  F ) `  N
) )
21 1z 11407 . . . . . . 7  |-  1  e.  ZZ
22 prmuz2 15408 . . . . . . . . 9  |-  ( N  e.  Prime  ->  N  e.  ( ZZ>= `  2 )
)
2322adantl 482 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  N  e.  ( ZZ>= ` 
2 ) )
24 df-2 11079 . . . . . . . . 9  |-  2  =  ( 1  +  1 )
2524fveq2i 6194 . . . . . . . 8  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
2623, 25syl6eleq 2711 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  N  e.  ( ZZ>= `  ( 1  +  1 ) ) )
27 seqm1 12818 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  N  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
(  seq 1 (  x.  ,  F ) `  N )  =  ( (  seq 1 (  x.  ,  F ) `
 ( N  - 
1 ) )  x.  ( F `  N
) ) )
2821, 26, 27sylancr 695 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
(  seq 1 (  x.  ,  F ) `  N )  =  ( (  seq 1 (  x.  ,  F ) `
 ( N  - 
1 ) )  x.  ( F `  N
) ) )
29 1t1e1 11175 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
3029a1i 11 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( 1  x.  1 )  =  1 )
31 uz2m1nn 11763 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  NN )
3223, 31syl 17 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( N  -  1 )  e.  NN )
33 nnuz 11723 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
3432, 33syl6eleq 2711 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( N  -  1 )  e.  ( ZZ>= ` 
1 ) )
35 elfznn 12370 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... ( N  -  1 ) )  ->  x  e.  NN )
3635adantl 482 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  Prime )  /\  x  e.  (
1 ... ( N  - 
1 ) ) )  ->  x  e.  NN )
372lgsfval 25027 . . . . . . . . . 10  |-  ( x  e.  NN  ->  ( F `  x )  =  if ( x  e. 
Prime ,  ( if ( x  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( x  -  1 )  /  2 ) )  +  1 )  mod  x )  -  1 ) ) ^ (
x  pCnt  N )
) ,  1 ) )
3836, 37syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  Prime )  /\  x  e.  (
1 ... ( N  - 
1 ) ) )  ->  ( F `  x )  =  if ( x  e.  Prime ,  ( if ( x  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( x  -  1 )  /  2 ) )  +  1 )  mod  x )  -  1 ) ) ^ (
x  pCnt  N )
) ,  1 ) )
39 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  N  e.  ZZ )
4039zred 11482 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  N  e.  RR )
4140ltm1d 10956 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  ( N  -  1 )  <  N )
42 elfzle2 12345 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  N  <_  ( N  -  1 ) )
43 peano2rem 10348 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
4440, 43syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  ( N  -  1 )  e.  RR )
4540, 44lenltd 10183 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  ( N  <_  ( N  - 
1 )  <->  -.  ( N  -  1 )  <  N ) )
4642, 45mpbid 222 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  -.  ( N  -  1
)  <  N )
4741, 46pm2.65i 185 . . . . . . . . . . . . . . . . . 18  |-  -.  N  e.  ( 1 ... ( N  -  1 ) )
48 eleq1 2689 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  N  ->  (
x  e.  ( 1 ... ( N  - 
1 ) )  <->  N  e.  ( 1 ... ( N  -  1 ) ) ) )
4947, 48mtbiri 317 . . . . . . . . . . . . . . . . 17  |-  ( x  =  N  ->  -.  x  e.  ( 1 ... ( N  - 
1 ) ) )
5049con2i 134 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 ... ( N  -  1 ) )  ->  -.  x  =  N )
5150ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  -.  x  =  N )
52 prmuz2 15408 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Prime  ->  x  e.  ( ZZ>= `  2 )
)
5352adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  x  e.  ( ZZ>= `  2 )
)
54 simpllr 799 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  N  e.  Prime )
55 dvdsprm 15415 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  N  e.  Prime )  ->  (
x  ||  N  <->  x  =  N ) )
5653, 54, 55syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  (
x  ||  N  <->  x  =  N ) )
5751, 56mtbird 315 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  -.  x  ||  N )
58 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  x  e.  Prime )
596ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  N  e.  NN )
60 pceq0 15575 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Prime  /\  N  e.  NN )  ->  (
( x  pCnt  N
)  =  0  <->  -.  x  ||  N ) )
6158, 59, 60syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  (
( x  pCnt  N
)  =  0  <->  -.  x  ||  N ) )
6257, 61mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  (
x  pCnt  N )  =  0 )
6362oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  ( if ( x  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( x  -  1 )  /  2 ) )  +  1 )  mod  x )  - 
1 ) ) ^
( x  pCnt  N
) )  =  ( if ( x  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( x  -  1 )  / 
2 ) )  +  1 )  mod  x
)  -  1 ) ) ^ 0 ) )
64 0z 11388 . . . . . . . . . . . . . . . . . 18  |-  0  e.  ZZ
65 neg1z 11413 . . . . . . . . . . . . . . . . . . 19  |-  -u 1  e.  ZZ
6621, 65keepel 4155 . . . . . . . . . . . . . . . . . 18  |-  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  e.  ZZ
6764, 66keepel 4155 . . . . . . . . . . . . . . . . 17  |-  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  e.  ZZ
6867a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  x  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  ZZ )
69 simpl 473 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  A  e.  ZZ )
7069ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  A  e.  ZZ )
71 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  x  e.  Prime )
72 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  -.  x  = 
2 )
7372neqned 2801 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  x  =/=  2
)
74 eldifsn 4317 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  ( Prime  \  {
2 } )  <->  ( x  e.  Prime  /\  x  =/=  2 ) )
7571, 73, 74sylanbrc 698 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  x  e.  ( Prime  \  { 2 } ) )
76 oddprm 15515 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  ( Prime  \  {
2 } )  -> 
( ( x  - 
1 )  /  2
)  e.  NN )
7775, 76syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  ( ( x  -  1 )  / 
2 )  e.  NN )
7877nnnn0d 11351 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  ( ( x  -  1 )  / 
2 )  e.  NN0 )
79 zexpcl 12875 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  ZZ  /\  ( ( x  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( x  -  1 )  /  2 ) )  e.  ZZ )
8070, 78, 79syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  ( A ^
( ( x  - 
1 )  /  2
) )  e.  ZZ )
8180peano2zd 11485 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  ( ( A ^ ( ( x  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
82 prmnn 15388 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  Prime  ->  x  e.  NN )
8382ad2antlr 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  x  e.  NN )
8481, 83zmodcld 12691 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  ( ( ( A ^ ( ( x  -  1 )  /  2 ) )  +  1 )  mod  x )  e.  NN0 )
8584nn0zd 11480 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  ( ( ( A ^ ( ( x  -  1 )  /  2 ) )  +  1 )  mod  x )  e.  ZZ )
86 peano2zm 11420 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A ^
( ( x  - 
1 )  /  2
) )  +  1 )  mod  x )  e.  ZZ  ->  (
( ( ( A ^ ( ( x  -  1 )  / 
2 ) )  +  1 )  mod  x
)  -  1 )  e.  ZZ )
8785, 86syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  Prime )  /\  -.  x  =  2 )  ->  ( ( ( ( A ^ (
( x  -  1 )  /  2 ) )  +  1 )  mod  x )  - 
1 )  e.  ZZ )
8868, 87ifclda 4120 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  N  e.  Prime )  /\  x  e.  Prime )  ->  if ( x  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( x  -  1 )  /  2 ) )  +  1 )  mod  x )  -  1 ) )  e.  ZZ )
8988zcnd 11483 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  N  e.  Prime )  /\  x  e.  Prime )  ->  if ( x  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( x  -  1 )  /  2 ) )  +  1 )  mod  x )  -  1 ) )  e.  CC )
9089adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  if ( x  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( x  -  1 )  /  2 ) )  +  1 )  mod  x )  -  1 ) )  e.  CC )
9190exp0d 13002 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  ( if ( x  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( x  -  1 )  /  2 ) )  +  1 )  mod  x )  - 
1 ) ) ^
0 )  =  1 )
9263, 91eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e. 
Prime )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  /\  x  e.  Prime )  ->  ( if ( x  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( x  -  1 )  /  2 ) )  +  1 )  mod  x )  - 
1 ) ) ^
( x  pCnt  N
) )  =  1 )
9392ifeq1da 4116 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  Prime )  /\  x  e.  (
1 ... ( N  - 
1 ) ) )  ->  if ( x  e.  Prime ,  ( if ( x  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( x  -  1 )  /  2 ) )  +  1 )  mod  x )  - 
1 ) ) ^
( x  pCnt  N
) ) ,  1 )  =  if ( x  e.  Prime ,  1 ,  1 ) )
94 ifid 4125 . . . . . . . . . 10  |-  if ( x  e.  Prime ,  1 ,  1 )  =  1
9593, 94syl6eq 2672 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  Prime )  /\  x  e.  (
1 ... ( N  - 
1 ) ) )  ->  if ( x  e.  Prime ,  ( if ( x  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( x  -  1 )  /  2 ) )  +  1 )  mod  x )  - 
1 ) ) ^
( x  pCnt  N
) ) ,  1 )  =  1 )
9638, 95eqtrd 2656 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  Prime )  /\  x  e.  (
1 ... ( N  - 
1 ) ) )  ->  ( F `  x )  =  1 )
9730, 34, 96seqid3 12845 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
(  seq 1 (  x.  ,  F ) `  ( N  -  1
) )  =  1 )
9897oveq1d 6665 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( (  seq 1
(  x.  ,  F
) `  ( N  -  1 ) )  x.  ( F `  N ) )  =  ( 1  x.  ( F `  N )
) )
991adantl 482 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  N  e.  ZZ )
1002lgsfcl 25030 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> ZZ )
10169, 99, 7, 100syl3anc 1326 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  F : NN --> ZZ )
102101, 6ffvelrnd 6360 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( F `  N
)  e.  ZZ )
103102zcnd 11483 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( F `  N
)  e.  CC )
104103mulid2d 10058 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( 1  x.  ( F `  N )
)  =  ( F `
 N ) )
10528, 98, 1043eqtrd 2660 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
(  seq 1 (  x.  ,  F ) `  N )  =  ( F `  N ) )
10620, 105eqtrd 2656 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
(  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  =  ( F `
 N ) )
10718, 106oveq12d 6668 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) )  =  ( 1  x.  ( F `  N ) ) )
1082lgsfval 25027 . . . . 5  |-  ( N  e.  NN  ->  ( F `  N )  =  if ( N  e. 
Prime ,  ( if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N )  -  1 ) ) ^ ( N  pCnt  N ) ) ,  1 ) )
1096, 108syl 17 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( F `  N
)  =  if ( N  e.  Prime ,  ( if ( N  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  / 
2 ) )  +  1 )  mod  N
)  -  1 ) ) ^ ( N 
pCnt  N ) ) ,  1 ) )
110 iftrue 4092 . . . . 5  |-  ( N  e.  Prime  ->  if ( N  e.  Prime ,  ( if ( N  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  / 
2 ) )  +  1 )  mod  N
)  -  1 ) ) ^ ( N 
pCnt  N ) ) ,  1 )  =  ( if ( N  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  / 
2 ) )  +  1 )  mod  N
)  -  1 ) ) ^ ( N 
pCnt  N ) ) )
111110adantl 482 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  if ( N  e.  Prime ,  ( if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N )  -  1 ) ) ^ ( N  pCnt  N ) ) ,  1 )  =  ( if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N )  -  1 ) ) ^ ( N  pCnt  N ) ) )
1126nncnd 11036 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  N  e.  CC )
113112exp1d 13003 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( N ^ 1 )  =  N )
114113oveq2d 6666 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( N  pCnt  ( N ^ 1 ) )  =  ( N  pCnt  N ) )
115 simpr 477 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  N  e.  Prime )
116 pcid 15577 . . . . . . . 8  |-  ( ( N  e.  Prime  /\  1  e.  ZZ )  ->  ( N  pCnt  ( N ^
1 ) )  =  1 )
117115, 21, 116sylancl 694 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( N  pCnt  ( N ^ 1 ) )  =  1 )
118114, 117eqtr3d 2658 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( N  pCnt  N
)  =  1 )
119118oveq2d 6666 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N )  -  1 ) ) ^ ( N  pCnt  N ) )  =  ( if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N )  -  1 ) ) ^ 1 ) )
12089ralrimiva 2966 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  A. x  e.  Prime  if ( x  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( x  -  1 )  /  2 ) )  +  1 )  mod  x )  - 
1 ) )  e.  CC )
121 eqeq1 2626 . . . . . . . . . 10  |-  ( x  =  N  ->  (
x  =  2  <->  N  =  2 ) )
122 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( x  =  N  ->  (
x  -  1 )  =  ( N  - 
1 ) )
123122oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( x  =  N  ->  (
( x  -  1 )  /  2 )  =  ( ( N  -  1 )  / 
2 ) )
124123oveq2d 6666 . . . . . . . . . . . . 13  |-  ( x  =  N  ->  ( A ^ ( ( x  -  1 )  / 
2 ) )  =  ( A ^ (
( N  -  1 )  /  2 ) ) )
125124oveq1d 6665 . . . . . . . . . . . 12  |-  ( x  =  N  ->  (
( A ^ (
( x  -  1 )  /  2 ) )  +  1 )  =  ( ( A ^ ( ( N  -  1 )  / 
2 ) )  +  1 ) )
126 id 22 . . . . . . . . . . . 12  |-  ( x  =  N  ->  x  =  N )
127125, 126oveq12d 6668 . . . . . . . . . . 11  |-  ( x  =  N  ->  (
( ( A ^
( ( x  - 
1 )  /  2
) )  +  1 )  mod  x )  =  ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N ) )
128127oveq1d 6665 . . . . . . . . . 10  |-  ( x  =  N  ->  (
( ( ( A ^ ( ( x  -  1 )  / 
2 ) )  +  1 )  mod  x
)  -  1 )  =  ( ( ( ( A ^ (
( N  -  1 )  /  2 ) )  +  1 )  mod  N )  - 
1 ) )
129121, 128ifbieq2d 4111 . . . . . . . . 9  |-  ( x  =  N  ->  if ( x  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( x  -  1 )  /  2 ) )  +  1 )  mod  x )  -  1 ) )  =  if ( N  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( N  -  1 )  /  2 ) )  +  1 )  mod  N )  - 
1 ) ) )
130129eleq1d 2686 . . . . . . . 8  |-  ( x  =  N  ->  ( if ( x  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( x  -  1 )  /  2 ) )  +  1 )  mod  x )  - 
1 ) )  e.  CC  <->  if ( N  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  / 
2 ) )  +  1 )  mod  N
)  -  1 ) )  e.  CC ) )
131130rspcv 3305 . . . . . . 7  |-  ( N  e.  Prime  ->  ( A. x  e.  Prime  if ( x  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( x  -  1 )  /  2 ) )  +  1 )  mod  x )  -  1 ) )  e.  CC  ->  if ( N  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  / 
2 ) )  +  1 )  mod  N
)  -  1 ) )  e.  CC ) )
132115, 120, 131sylc 65 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  ->  if ( N  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( N  -  1 )  /  2 ) )  +  1 )  mod  N )  - 
1 ) )  e.  CC )
133132exp1d 13003 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N )  -  1 ) ) ^ 1 )  =  if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N )  -  1 ) ) )
134119, 133eqtrd 2656 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N )  -  1 ) ) ^ ( N  pCnt  N ) )  =  if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N )  -  1 ) ) )
135109, 111, 1343eqtrd 2660 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( F `  N
)  =  if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N )  -  1 ) ) )
136107, 104, 1353eqtrd 2660 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) )  =  if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( N  -  1 )  /  2 ) )  +  1 )  mod 
N )  -  1 ) ) )
1374, 9, 1363eqtrd 2660 1  |-  ( ( A  e.  ZZ  /\  N  e.  Prime )  -> 
( A  /L
N )  =  if ( N  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( N  -  1 )  /  2 ) )  +  1 )  mod  N )  - 
1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571   ifcif 4086   {csn 4177   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   7c7 11075   8c8 11076   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    mod cmo 12668    seqcseq 12801   ^cexp 12860   abscabs 13974    || cdvds 14983   Primecprime 15385    pCnt cpc 15541    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-lgs 25020
This theorem is referenced by:  lgsval4lem  25033  lgsval2  25038
  Copyright terms: Public domain W3C validator