MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval Structured version   Visualization version   Unicode version

Theorem lgsval 25026
Description: Value of the Legendre symbol at an arbitrary integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
Assertion
Ref Expression
lgsval  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) ) )
Distinct variable groups:    A, n    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsval
Dummy variables  a  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( ( a  =  A  /\  m  =  N )  ->  m  =  N )
21eqeq1d 2624 . . 3  |-  ( ( a  =  A  /\  m  =  N )  ->  ( m  =  0  <-> 
N  =  0 ) )
3 simpl 473 . . . . . 6  |-  ( ( a  =  A  /\  m  =  N )  ->  a  =  A )
43oveq1d 6665 . . . . 5  |-  ( ( a  =  A  /\  m  =  N )  ->  ( a ^ 2 )  =  ( A ^ 2 ) )
54eqeq1d 2624 . . . 4  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( a ^
2 )  =  1  <-> 
( A ^ 2 )  =  1 ) )
65ifbid 4108 . . 3  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( ( a ^ 2 )  =  1 ,  1 ,  0 )  =  if ( ( A ^
2 )  =  1 ,  1 ,  0 ) )
71breq1d 4663 . . . . . 6  |-  ( ( a  =  A  /\  m  =  N )  ->  ( m  <  0  <->  N  <  0 ) )
83breq1d 4663 . . . . . 6  |-  ( ( a  =  A  /\  m  =  N )  ->  ( a  <  0  <->  A  <  0 ) )
97, 8anbi12d 747 . . . . 5  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( m  <  0  /\  a  <  0 )  <->  ( N  <  0  /\  A  <  0 ) ) )
109ifbid 4108 . . . 4  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( ( m  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  =  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )
113breq2d 4665 . . . . . . . . . . . 12  |-  ( ( a  =  A  /\  m  =  N )  ->  ( 2  ||  a  <->  2 
||  A ) )
123oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( a  =  A  /\  m  =  N )  ->  ( a  mod  8
)  =  ( A  mod  8 ) )
1312eleq1d 2686 . . . . . . . . . . . . 13  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( a  mod  8 )  e.  {
1 ,  7 }  <-> 
( A  mod  8
)  e.  { 1 ,  7 } ) )
1413ifbid 4108 . . . . . . . . . . . 12  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( ( a  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 )  =  if ( ( A  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
1511, 14ifbieq2d 4111 . . . . . . . . . . 11  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
163oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( a  =  A  /\  m  =  N )  ->  ( a ^ (
( n  -  1 )  /  2 ) )  =  ( A ^ ( ( n  -  1 )  / 
2 ) ) )
1716oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( a ^
( ( n  - 
1 )  /  2
) )  +  1 )  =  ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 ) )
1817oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( ( a ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  =  ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n ) )
1918oveq1d 6665 . . . . . . . . . . 11  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 )  =  ( ( ( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  -  1 ) )
2015, 19ifeq12d 4106 . . . . . . . . . 10  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) )  =  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) )
211oveq2d 6666 . . . . . . . . . 10  |-  ( ( a  =  A  /\  m  =  N )  ->  ( n  pCnt  m
)  =  ( n 
pCnt  N ) )
2220, 21oveq12d 6668 . . . . . . . . 9  |-  ( ( a  =  A  /\  m  =  N )  ->  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
)  =  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) ) )
2322ifeq1d 4104 . . . . . . . 8  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( n  e. 
Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
) ,  1 )  =  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) ) ,  1 ) )
2423mpteq2dv 4745 . . . . . . 7  |-  ( ( a  =  A  /\  m  =  N )  ->  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) ) ^ ( n 
pCnt  N ) ) ,  1 ) ) )
25 lgsval.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
2624, 25syl6eqr 2674 . . . . . 6  |-  ( ( a  =  A  /\  m  =  N )  ->  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
) ,  1 ) )  =  F )
2726seqeq3d 12809 . . . . 5  |-  ( ( a  =  A  /\  m  =  N )  ->  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
||  a ,  0 ,  if ( ( a  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( a ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  m
) ) ,  1 ) ) )  =  seq 1 (  x.  ,  F ) )
281fveq2d 6195 . . . . 5  |-  ( ( a  =  A  /\  m  =  N )  ->  ( abs `  m
)  =  ( abs `  N ) )
2927, 28fveq12d 6197 . . . 4  |-  ( ( a  =  A  /\  m  =  N )  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) ) ^ ( n 
pCnt  m ) ) ,  1 ) ) ) `
 ( abs `  m
) )  =  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) )
3010, 29oveq12d 6668 . . 3  |-  ( ( a  =  A  /\  m  =  N )  ->  ( if ( ( m  <  0  /\  a  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
) ,  1 ) ) ) `  ( abs `  m ) ) )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) ) )
312, 6, 30ifbieq12d 4113 . 2  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( m  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( m  <  0  /\  a  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) ) ^ ( n 
pCnt  m ) ) ,  1 ) ) ) `
 ( abs `  m
) ) ) )  =  if ( N  =  0 ,  if ( ( A ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) ) ) )
32 df-lgs 25020 . 2  |-  /L 
=  ( a  e.  ZZ ,  m  e.  ZZ  |->  if ( m  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( m  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
) ,  1 ) ) ) `  ( abs `  m ) ) ) ) )
33 1nn0 11308 . . . . 5  |-  1  e.  NN0
34 0nn0 11307 . . . . 5  |-  0  e.  NN0
3533, 34keepel 4155 . . . 4  |-  if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  e.  NN0
3635elexi 3213 . . 3  |-  if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  e.  _V
37 ovex 6678 . . 3  |-  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) )  e.  _V
3836, 37ifex 4156 . 2  |-  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) ) )  e.  _V
3931, 32, 38ovmpt2a 6791 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   7c7 11075   8c8 11076   NN0cn0 11292   ZZcz 11377    mod cmo 12668    seqcseq 12801   ^cexp 12860   abscabs 13974    || cdvds 14983   Primecprime 15385    pCnt cpc 15541    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021  df-n0 11293  df-seq 12802  df-lgs 25020
This theorem is referenced by:  lgscllem  25029  lgsval2lem  25032  lgs0  25035  lgsval4  25042
  Copyright terms: Public domain W3C validator