Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincop Structured version   Visualization version   Unicode version

Theorem lincop 42197
Description: A linear combination as operation. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
lincop  |-  ( M  e.  X  ->  ( linC  `  M )  =  ( s  e.  ( (
Base `  (Scalar `  M
) )  ^m  v
) ,  v  e. 
~P ( Base `  M
)  |->  ( M  gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s `  M
) x ) ) ) ) )
Distinct variable groups:    M, s,
v, x    v, X
Allowed substitution hints:    X( x, s)

Proof of Theorem lincop
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 df-linc 42195 . . 3  |- linC  =  ( m  e.  _V  |->  ( s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
) ,  v  e. 
~P ( Base `  m
)  |->  ( m  gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s `  m
) x ) ) ) ) )
21a1i 11 . 2  |-  ( M  e.  X  -> linC  =  ( m  e.  _V  |->  ( s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
) ,  v  e. 
~P ( Base `  m
)  |->  ( m  gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s `  m
) x ) ) ) ) ) )
3 fveq2 6191 . . . . . 6  |-  ( m  =  M  ->  (Scalar `  m )  =  (Scalar `  M ) )
43fveq2d 6195 . . . . 5  |-  ( m  =  M  ->  ( Base `  (Scalar `  m
) )  =  (
Base `  (Scalar `  M
) ) )
54oveq1d 6665 . . . 4  |-  ( m  =  M  ->  (
( Base `  (Scalar `  m
) )  ^m  v
)  =  ( (
Base `  (Scalar `  M
) )  ^m  v
) )
6 fveq2 6191 . . . . 5  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
76pweqd 4163 . . . 4  |-  ( m  =  M  ->  ~P ( Base `  m )  =  ~P ( Base `  M
) )
8 id 22 . . . . 5  |-  ( m  =  M  ->  m  =  M )
9 fveq2 6191 . . . . . . 7  |-  ( m  =  M  ->  ( .s `  m )  =  ( .s `  M
) )
109oveqd 6667 . . . . . 6  |-  ( m  =  M  ->  (
( s `  x
) ( .s `  m ) x )  =  ( ( s `
 x ) ( .s `  M ) x ) )
1110mpteq2dv 4745 . . . . 5  |-  ( m  =  M  ->  (
x  e.  v  |->  ( ( s `  x
) ( .s `  m ) x ) )  =  ( x  e.  v  |->  ( ( s `  x ) ( .s `  M
) x ) ) )
128, 11oveq12d 6668 . . . 4  |-  ( m  =  M  ->  (
m  gsumg  ( x  e.  v 
|->  ( ( s `  x ) ( .s
`  m ) x ) ) )  =  ( M  gsumg  ( x  e.  v 
|->  ( ( s `  x ) ( .s
`  M ) x ) ) ) )
135, 7, 12mpt2eq123dv 6717 . . 3  |-  ( m  =  M  ->  (
s  e.  ( (
Base `  (Scalar `  m
) )  ^m  v
) ,  v  e. 
~P ( Base `  m
)  |->  ( m  gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s `  m
) x ) ) ) )  =  ( s  e.  ( (
Base `  (Scalar `  M
) )  ^m  v
) ,  v  e. 
~P ( Base `  M
)  |->  ( M  gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s `  M
) x ) ) ) ) )
1413adantl 482 . 2  |-  ( ( M  e.  X  /\  m  =  M )  ->  ( s  e.  ( ( Base `  (Scalar `  m ) )  ^m  v ) ,  v  e.  ~P ( Base `  m )  |->  ( m 
gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s
`  m ) x ) ) ) )  =  ( s  e.  ( ( Base `  (Scalar `  M ) )  ^m  v ) ,  v  e.  ~P ( Base `  M )  |->  ( M 
gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s
`  M ) x ) ) ) ) )
15 elex 3212 . 2  |-  ( M  e.  X  ->  M  e.  _V )
16 fvex 6201 . . . 4  |-  ( Base `  M )  e.  _V
1716pwex 4848 . . 3  |-  ~P ( Base `  M )  e. 
_V
18 ovexd 6680 . . . 4  |-  ( M  e.  X  ->  (
( Base `  (Scalar `  M
) )  ^m  v
)  e.  _V )
1918ralrimivw 2967 . . 3  |-  ( M  e.  X  ->  A. v  e.  ~P  ( Base `  M
) ( ( Base `  (Scalar `  M )
)  ^m  v )  e.  _V )
20 eqid 2622 . . . 4  |-  ( s  e.  ( ( Base `  (Scalar `  M )
)  ^m  v ) ,  v  e.  ~P ( Base `  M )  |->  ( M  gsumg  ( x  e.  v 
|->  ( ( s `  x ) ( .s
`  M ) x ) ) ) )  =  ( s  e.  ( ( Base `  (Scalar `  M ) )  ^m  v ) ,  v  e.  ~P ( Base `  M )  |->  ( M 
gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s
`  M ) x ) ) ) )
2120mpt2exxg2 42116 . . 3  |-  ( ( ~P ( Base `  M
)  e.  _V  /\  A. v  e.  ~P  ( Base `  M ) ( ( Base `  (Scalar `  M ) )  ^m  v )  e.  _V )  ->  ( s  e.  ( ( Base `  (Scalar `  M ) )  ^m  v ) ,  v  e.  ~P ( Base `  M )  |->  ( M 
gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s
`  M ) x ) ) ) )  e.  _V )
2217, 19, 21sylancr 695 . 2  |-  ( M  e.  X  ->  (
s  e.  ( (
Base `  (Scalar `  M
) )  ^m  v
) ,  v  e. 
~P ( Base `  M
)  |->  ( M  gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s `  M
) x ) ) ) )  e.  _V )
232, 14, 15, 22fvmptd 6288 1  |-  ( M  e.  X  ->  ( linC  `  M )  =  ( s  e.  ( (
Base `  (Scalar `  M
) )  ^m  v
) ,  v  e. 
~P ( Base `  M
)  |->  ( M  gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s `  M
) x ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   Basecbs 15857  Scalarcsca 15944   .scvsca 15945    gsumg cgsu 16101   linC clinc 42193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-linc 42195
This theorem is referenced by:  lincval  42198
  Copyright terms: Public domain W3C validator