MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmclm Structured version   Visualization version   Unicode version

Theorem lmhmclm 22887
Description: The domain of a linear operator is a subcomplex module iff the range is. (Contributed by Mario Carneiro, 21-Oct-2015.)
Assertion
Ref Expression
lmhmclm  |-  ( F  e.  ( S LMHom  T
)  ->  ( S  e. CMod  <-> 
T  e. CMod ) )

Proof of Theorem lmhmclm
StepHypRef Expression
1 lmhmlmod1 19033 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
2 lmhmlmod2 19032 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
31, 22thd 255 . . 3  |-  ( F  e.  ( S LMHom  T
)  ->  ( S  e.  LMod  <->  T  e.  LMod ) )
4 eqid 2622 . . . . . 6  |-  (Scalar `  S )  =  (Scalar `  S )
5 eqid 2622 . . . . . 6  |-  (Scalar `  T )  =  (Scalar `  T )
64, 5lmhmsca 19030 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  (Scalar `  T
)  =  (Scalar `  S ) )
76eqcomd 2628 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  (Scalar `  S
)  =  (Scalar `  T ) )
87fveq2d 6195 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  ( Base `  (Scalar `  S )
)  =  ( Base `  (Scalar `  T )
) )
98oveq2d 6666 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  (flds  ( Base `  (Scalar `  S ) ) )  =  (flds  (
Base `  (Scalar `  T
) ) ) )
107, 9eqeq12d 2637 . . 3  |-  ( F  e.  ( S LMHom  T
)  ->  ( (Scalar `  S )  =  (flds  ( Base `  (Scalar `  S )
) )  <->  (Scalar `  T
)  =  (flds  ( Base `  (Scalar `  T ) ) ) ) )
118eleq1d 2686 . . 3  |-  ( F  e.  ( S LMHom  T
)  ->  ( ( Base `  (Scalar `  S
) )  e.  (SubRing ` fld ) 
<->  ( Base `  (Scalar `  T ) )  e.  (SubRing ` fld ) ) )
123, 10, 113anbi123d 1399 . 2  |-  ( F  e.  ( S LMHom  T
)  ->  ( ( S  e.  LMod  /\  (Scalar `  S )  =  (flds  ( Base `  (Scalar `  S )
) )  /\  ( Base `  (Scalar `  S
) )  e.  (SubRing ` fld ) )  <->  ( T  e.  LMod  /\  (Scalar `  T
)  =  (flds  ( Base `  (Scalar `  T ) ) )  /\  ( Base `  (Scalar `  T ) )  e.  (SubRing ` fld ) ) ) )
13 eqid 2622 . . 3  |-  ( Base `  (Scalar `  S )
)  =  ( Base `  (Scalar `  S )
)
144, 13isclm 22864 . 2  |-  ( S  e. CMod 
<->  ( S  e.  LMod  /\  (Scalar `  S )  =  (flds  (
Base `  (Scalar `  S
) ) )  /\  ( Base `  (Scalar `  S
) )  e.  (SubRing ` fld ) ) )
15 eqid 2622 . . 3  |-  ( Base `  (Scalar `  T )
)  =  ( Base `  (Scalar `  T )
)
165, 15isclm 22864 . 2  |-  ( T  e. CMod 
<->  ( T  e.  LMod  /\  (Scalar `  T )  =  (flds  (
Base `  (Scalar `  T
) ) )  /\  ( Base `  (Scalar `  T
) )  e.  (SubRing ` fld ) ) )
1712, 14, 163bitr4g 303 1  |-  ( F  e.  ( S LMHom  T
)  ->  ( S  e. CMod  <-> 
T  e. CMod ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858  Scalarcsca 15944  SubRingcsubrg 18776   LModclmod 18863   LMHom clmhm 19019  ℂfldccnfld 19746  CModcclm 22862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-lmhm 19022  df-clm 22863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator