Proof of Theorem lmhmclm
Step | Hyp | Ref
| Expression |
1 | | lmhmlmod1 19033 |
. . . 4
  LMHom 
  |
2 | | lmhmlmod2 19032 |
. . . 4
  LMHom 
  |
3 | 1, 2 | 2thd 255 |
. . 3
  LMHom 

   |
4 | | eqid 2622 |
. . . . . 6
Scalar  Scalar   |
5 | | eqid 2622 |
. . . . . 6
Scalar  Scalar   |
6 | 4, 5 | lmhmsca 19030 |
. . . . 5
  LMHom 
Scalar  Scalar    |
7 | 6 | eqcomd 2628 |
. . . 4
  LMHom 
Scalar  Scalar    |
8 | 7 | fveq2d 6195 |
. . . . 5
  LMHom 
   Scalar      Scalar     |
9 | 8 | oveq2d 6666 |
. . . 4
  LMHom 
ℂfld
↾s    Scalar    ℂfld ↾s    Scalar      |
10 | 7, 9 | eqeq12d 2637 |
. . 3
  LMHom 
 Scalar  ℂfld ↾s    Scalar   
Scalar  ℂfld
↾s    Scalar       |
11 | 8 | eleq1d 2686 |
. . 3
  LMHom 
    Scalar   SubRing ℂfld    Scalar   SubRing ℂfld   |
12 | 3, 10, 11 | 3anbi123d 1399 |
. 2
  LMHom 
 
Scalar  ℂfld ↾s    Scalar       Scalar   SubRing ℂfld

Scalar  ℂfld
↾s    Scalar       Scalar   SubRing ℂfld    |
13 | | eqid 2622 |
. . 3
   Scalar      Scalar    |
14 | 4, 13 | isclm 22864 |
. 2
 CMod  Scalar  ℂfld ↾s    Scalar       Scalar   SubRing ℂfld   |
15 | | eqid 2622 |
. . 3
   Scalar      Scalar    |
16 | 5, 15 | isclm 22864 |
. 2
 CMod  Scalar  ℂfld ↾s    Scalar       Scalar   SubRing ℂfld   |
17 | 12, 14, 16 | 3bitr4g 303 |
1
  LMHom 
 CMod
CMod  |