| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssset | Structured version Visualization version Unicode version | ||
| Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| lssset.f |
|
| lssset.b |
|
| lssset.v |
|
| lssset.p |
|
| lssset.t |
|
| lssset.s |
|
| Ref | Expression |
|---|---|
| lssset |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssset.s |
. 2
| |
| 2 | elex 3212 |
. . 3
| |
| 3 | fveq2 6191 |
. . . . . . . 8
| |
| 4 | lssset.v |
. . . . . . . 8
| |
| 5 | 3, 4 | syl6eqr 2674 |
. . . . . . 7
|
| 6 | 5 | pweqd 4163 |
. . . . . 6
|
| 7 | 6 | difeq1d 3727 |
. . . . 5
|
| 8 | fveq2 6191 |
. . . . . . . . 9
| |
| 9 | lssset.f |
. . . . . . . . 9
| |
| 10 | 8, 9 | syl6eqr 2674 |
. . . . . . . 8
|
| 11 | 10 | fveq2d 6195 |
. . . . . . 7
|
| 12 | lssset.b |
. . . . . . 7
| |
| 13 | 11, 12 | syl6eqr 2674 |
. . . . . 6
|
| 14 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 15 | lssset.t |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 17 | 16 | oveqd 6667 |
. . . . . . . . . 10
|
| 18 | 17 | oveq1d 6665 |
. . . . . . . . 9
|
| 19 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 20 | lssset.p |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 22 | 21 | oveqd 6667 |
. . . . . . . . 9
|
| 23 | 18, 22 | eqtrd 2656 |
. . . . . . . 8
|
| 24 | 23 | eleq1d 2686 |
. . . . . . 7
|
| 25 | 24 | 2ralbidv 2989 |
. . . . . 6
|
| 26 | 13, 25 | raleqbidv 3152 |
. . . . 5
|
| 27 | 7, 26 | rabeqbidv 3195 |
. . . 4
|
| 28 | df-lss 18933 |
. . . 4
| |
| 29 | fvex 6201 |
. . . . . . . 8
| |
| 30 | 4, 29 | eqeltri 2697 |
. . . . . . 7
|
| 31 | 30 | pwex 4848 |
. . . . . 6
|
| 32 | difexg 4808 |
. . . . . 6
| |
| 33 | 31, 32 | ax-mp 5 |
. . . . 5
|
| 34 | 33 | rabex 4813 |
. . . 4
|
| 35 | 27, 28, 34 | fvmpt 6282 |
. . 3
|
| 36 | 2, 35 | syl 17 |
. 2
|
| 37 | 1, 36 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-lss 18933 |
| This theorem is referenced by: islss 18935 |
| Copyright terms: Public domain | W3C validator |