MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpr Structured version   Visualization version   Unicode version

Theorem ltrelpr 9820
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpr  |-  <P  C_  ( P.  X.  P. )

Proof of Theorem ltrelpr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltp 9807 . 2  |-  <P  =  { <. x ,  y
>.  |  ( (
x  e.  P.  /\  y  e.  P. )  /\  x  C.  y ) }
2 opabssxp 5193 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  x  C.  y ) }  C_  ( P.  X.  P. )
31, 2eqsstri 3635 1  |-  <P  C_  ( P.  X.  P. )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    e. wcel 1990    C_ wss 3574    C. wpss 3575   {copab 4712    X. cxp 5112   P.cnp 9681    <P cltp 9685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-in 3581  df-ss 3588  df-opab 4713  df-xp 5120  df-ltp 9807
This theorem is referenced by:  ltexpri  9865  ltaprlem  9866  ltapr  9867  suplem1pr  9874  suplem2pr  9875  supexpr  9876  ltsrpr  9898  ltsosr  9915  mappsrpr  9929
  Copyright terms: Public domain W3C validator