| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > genpv | Structured version Visualization version Unicode version | ||
| Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| genp.1 |
|
| genp.2 |
|
| Ref | Expression |
|---|---|
| genpv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6657 |
. . . 4
| |
| 2 | rexeq 3139 |
. . . . 5
| |
| 3 | 2 | abbidv 2741 |
. . . 4
|
| 4 | 1, 3 | eqeq12d 2637 |
. . 3
|
| 5 | oveq2 6658 |
. . . 4
| |
| 6 | rexeq 3139 |
. . . . . 6
| |
| 7 | 6 | rexbidv 3052 |
. . . . 5
|
| 8 | 7 | abbidv 2741 |
. . . 4
|
| 9 | 5, 8 | eqeq12d 2637 |
. . 3
|
| 10 | elprnq 9813 |
. . . . . . . . 9
| |
| 11 | elprnq 9813 |
. . . . . . . . 9
| |
| 12 | genp.2 |
. . . . . . . . . 10
| |
| 13 | eleq1 2689 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | syl5ibrcom 237 |
. . . . . . . . 9
|
| 15 | 10, 11, 14 | syl2an 494 |
. . . . . . . 8
|
| 16 | 15 | an4s 869 |
. . . . . . 7
|
| 17 | 16 | rexlimdvva 3038 |
. . . . . 6
|
| 18 | 17 | abssdv 3676 |
. . . . 5
|
| 19 | nqex 9745 |
. . . . 5
| |
| 20 | ssexg 4804 |
. . . . 5
| |
| 21 | 18, 19, 20 | sylancl 694 |
. . . 4
|
| 22 | rexeq 3139 |
. . . . . 6
| |
| 23 | 22 | abbidv 2741 |
. . . . 5
|
| 24 | rexeq 3139 |
. . . . . . 7
| |
| 25 | 24 | rexbidv 3052 |
. . . . . 6
|
| 26 | 25 | abbidv 2741 |
. . . . 5
|
| 27 | genp.1 |
. . . . 5
| |
| 28 | 23, 26, 27 | ovmpt2g 6795 |
. . . 4
|
| 29 | 21, 28 | mpd3an3 1425 |
. . 3
|
| 30 | 4, 9, 29 | vtocl2ga 3274 |
. 2
|
| 31 | eqeq1 2626 |
. . . . 5
| |
| 32 | 31 | 2rexbidv 3057 |
. . . 4
|
| 33 | oveq1 6657 |
. . . . . 6
| |
| 34 | 33 | eqeq2d 2632 |
. . . . 5
|
| 35 | oveq2 6658 |
. . . . . 6
| |
| 36 | 35 | eqeq2d 2632 |
. . . . 5
|
| 37 | 34, 36 | cbvrex2v 3180 |
. . . 4
|
| 38 | 32, 37 | syl6bb 276 |
. . 3
|
| 39 | 38 | cbvabv 2747 |
. 2
|
| 40 | 30, 39 | syl6eq 2672 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-ni 9694 df-nq 9734 df-np 9803 |
| This theorem is referenced by: genpelv 9822 plpv 9832 mpv 9833 |
| Copyright terms: Public domain | W3C validator |