| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsrpr | Structured version Visualization version Unicode version | ||
| Description: Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltsrpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrex 9888 |
. 2
| |
| 2 | enrer 9886 |
. . 3
| |
| 3 | erdm 7752 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | df-nr 9878 |
. 2
| |
| 6 | ltrelsr 9889 |
. 2
| |
| 7 | ltrelpr 9820 |
. 2
| |
| 8 | 0npr 9814 |
. 2
| |
| 9 | dmplp 9834 |
. 2
| |
| 10 | df-ltr 9881 |
. . 3
| |
| 11 | addclpr 9840 |
. . . . . . 7
| |
| 12 | 11 | ad2ant2lr 784 |
. . . . . 6
|
| 13 | addclpr 9840 |
. . . . . . 7
| |
| 14 | 13 | ad2ant2lr 784 |
. . . . . 6
|
| 15 | 12, 14 | anim12ci 591 |
. . . . 5
|
| 16 | 15 | an4s 869 |
. . . 4
|
| 17 | enreceq 9887 |
. . . . . 6
| |
| 18 | enreceq 9887 |
. . . . . . 7
| |
| 19 | eqcom 2629 |
. . . . . . 7
| |
| 20 | 18, 19 | syl6bb 276 |
. . . . . 6
|
| 21 | 17, 20 | bi2anan9 917 |
. . . . 5
|
| 22 | oveq12 6659 |
. . . . . 6
| |
| 23 | addcompr 9843 |
. . . . . . . . . 10
| |
| 24 | 23 | oveq1i 6660 |
. . . . . . . . 9
|
| 25 | addasspr 9844 |
. . . . . . . . 9
| |
| 26 | addasspr 9844 |
. . . . . . . . 9
| |
| 27 | 24, 25, 26 | 3eqtr3i 2652 |
. . . . . . . 8
|
| 28 | 27 | oveq2i 6661 |
. . . . . . 7
|
| 29 | addasspr 9844 |
. . . . . . 7
| |
| 30 | addasspr 9844 |
. . . . . . 7
| |
| 31 | 28, 29, 30 | 3eqtr4i 2654 |
. . . . . 6
|
| 32 | addcompr 9843 |
. . . . . . . . . 10
| |
| 33 | 32 | oveq1i 6660 |
. . . . . . . . 9
|
| 34 | addasspr 9844 |
. . . . . . . . 9
| |
| 35 | addasspr 9844 |
. . . . . . . . 9
| |
| 36 | 33, 34, 35 | 3eqtr3i 2652 |
. . . . . . . 8
|
| 37 | 36 | oveq2i 6661 |
. . . . . . 7
|
| 38 | addasspr 9844 |
. . . . . . 7
| |
| 39 | addasspr 9844 |
. . . . . . 7
| |
| 40 | 37, 38, 39 | 3eqtr4i 2654 |
. . . . . 6
|
| 41 | 22, 31, 40 | 3eqtr4g 2681 |
. . . . 5
|
| 42 | 21, 41 | syl6bi 243 |
. . . 4
|
| 43 | ovex 6678 |
. . . . 5
| |
| 44 | ovex 6678 |
. . . . 5
| |
| 45 | ltapr 9867 |
. . . . 5
| |
| 46 | ovex 6678 |
. . . . 5
| |
| 47 | addcompr 9843 |
. . . . 5
| |
| 48 | ovex 6678 |
. . . . 5
| |
| 49 | 43, 44, 45, 46, 47, 48 | caovord3 6847 |
. . . 4
|
| 50 | 16, 42, 49 | syl6an 568 |
. . 3
|
| 51 | 1, 2, 5, 10, 50 | brecop 7840 |
. 2
|
| 52 | 1, 4, 5, 6, 7, 8, 9, 51 | brecop2 7841 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ec 7744 df-qs 7748 df-ni 9694 df-pli 9695 df-mi 9696 df-lti 9697 df-plpq 9730 df-mpq 9731 df-ltpq 9732 df-enq 9733 df-nq 9734 df-erq 9735 df-plq 9736 df-mq 9737 df-1nq 9738 df-rq 9739 df-ltnq 9740 df-np 9803 df-plp 9805 df-ltp 9807 df-enr 9877 df-nr 9878 df-ltr 9881 |
| This theorem is referenced by: gt0srpr 9899 ltsosr 9915 0lt1sr 9916 ltasr 9921 mappsrpr 9929 ltpsrpr 9930 map2psrpr 9931 |
| Copyright terms: Public domain | W3C validator |