| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suplem1pr | Structured version Visualization version Unicode version | ||
| Description: The union of a nonempty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| suplem1pr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpr 9820 |
. . . . . . . . 9
| |
| 2 | 1 | brel 5168 |
. . . . . . . 8
|
| 3 | 2 | simpld 475 |
. . . . . . 7
|
| 4 | 3 | ralimi 2952 |
. . . . . 6
|
| 5 | dfss3 3592 |
. . . . . 6
| |
| 6 | 4, 5 | sylibr 224 |
. . . . 5
|
| 7 | 6 | rexlimivw 3029 |
. . . 4
|
| 8 | 7 | adantl 482 |
. . 3
|
| 9 | n0 3931 |
. . . . 5
| |
| 10 | ssel 3597 |
. . . . . . 7
| |
| 11 | prn0 9811 |
. . . . . . . . . 10
| |
| 12 | 0pss 4013 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | sylibr 224 |
. . . . . . . . 9
|
| 14 | elssuni 4467 |
. . . . . . . . 9
| |
| 15 | psssstr 3713 |
. . . . . . . . 9
| |
| 16 | 13, 14, 15 | syl2an 494 |
. . . . . . . 8
|
| 17 | 16 | expcom 451 |
. . . . . . 7
|
| 18 | 10, 17 | sylcom 30 |
. . . . . 6
|
| 19 | 18 | exlimdv 1861 |
. . . . 5
|
| 20 | 9, 19 | syl5bi 232 |
. . . 4
|
| 21 | prpssnq 9812 |
. . . . . . 7
| |
| 22 | 21 | adantl 482 |
. . . . . 6
|
| 23 | ltprord 9852 |
. . . . . . . . . 10
| |
| 24 | pssss 3702 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | syl6bi 243 |
. . . . . . . . 9
|
| 26 | 2, 25 | mpcom 38 |
. . . . . . . 8
|
| 27 | 26 | ralimi 2952 |
. . . . . . 7
|
| 28 | unissb 4469 |
. . . . . . 7
| |
| 29 | 27, 28 | sylibr 224 |
. . . . . 6
|
| 30 | sspsstr 3712 |
. . . . . . 7
| |
| 31 | 30 | expcom 451 |
. . . . . 6
|
| 32 | 22, 29, 31 | syl2im 40 |
. . . . 5
|
| 33 | 32 | rexlimdva 3031 |
. . . 4
|
| 34 | 20, 33 | anim12d 586 |
. . 3
|
| 35 | 8, 34 | mpcom 38 |
. 2
|
| 36 | prcdnq 9815 |
. . . . . . . . . . . . 13
| |
| 37 | 36 | ex 450 |
. . . . . . . . . . . 12
|
| 38 | 37 | com3r 87 |
. . . . . . . . . . 11
|
| 39 | 10, 38 | sylan9 689 |
. . . . . . . . . 10
|
| 40 | 39 | reximdvai 3015 |
. . . . . . . . 9
|
| 41 | eluni2 4440 |
. . . . . . . . 9
| |
| 42 | eluni2 4440 |
. . . . . . . . 9
| |
| 43 | 40, 41, 42 | 3imtr4g 285 |
. . . . . . . 8
|
| 44 | 43 | ex 450 |
. . . . . . 7
|
| 45 | 44 | com23 86 |
. . . . . 6
|
| 46 | 45 | alrimdv 1857 |
. . . . 5
|
| 47 | eluni 4439 |
. . . . . 6
| |
| 48 | prnmax 9817 |
. . . . . . . . . . . . 13
| |
| 49 | 48 | ex 450 |
. . . . . . . . . . . 12
|
| 50 | 10, 49 | syl6 35 |
. . . . . . . . . . 11
|
| 51 | 50 | com23 86 |
. . . . . . . . . 10
|
| 52 | 51 | imp 445 |
. . . . . . . . 9
|
| 53 | ssrexv 3667 |
. . . . . . . . . 10
| |
| 54 | 14, 53 | syl 17 |
. . . . . . . . 9
|
| 55 | 52, 54 | sylcom 30 |
. . . . . . . 8
|
| 56 | 55 | expimpd 629 |
. . . . . . 7
|
| 57 | 56 | exlimdv 1861 |
. . . . . 6
|
| 58 | 47, 57 | syl5bi 232 |
. . . . 5
|
| 59 | 46, 58 | jcad 555 |
. . . 4
|
| 60 | 59 | ralrimiv 2965 |
. . 3
|
| 61 | 8, 60 | syl 17 |
. 2
|
| 62 | elnp 9809 |
. 2
| |
| 63 | 35, 61, 62 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-om 7066 df-ni 9694 df-nq 9734 df-ltnq 9740 df-np 9803 df-ltp 9807 |
| This theorem is referenced by: supexpr 9876 |
| Copyright terms: Public domain | W3C validator |