| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsosr | Structured version Visualization version Unicode version | ||
| Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltsosr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 9878 |
. . 3
| |
| 2 | breq1 4656 |
. . . 4
| |
| 3 | eqeq1 2626 |
. . . . . 6
| |
| 4 | breq2 4657 |
. . . . . 6
| |
| 5 | 3, 4 | orbi12d 746 |
. . . . 5
|
| 6 | 5 | notbid 308 |
. . . 4
|
| 7 | 2, 6 | bibi12d 335 |
. . 3
|
| 8 | breq2 4657 |
. . . 4
| |
| 9 | eqeq2 2633 |
. . . . . 6
| |
| 10 | breq1 4656 |
. . . . . 6
| |
| 11 | 9, 10 | orbi12d 746 |
. . . . 5
|
| 12 | 11 | notbid 308 |
. . . 4
|
| 13 | 8, 12 | bibi12d 335 |
. . 3
|
| 14 | ltsrpr 9898 |
. . . 4
| |
| 15 | addclpr 9840 |
. . . . . . 7
| |
| 16 | addclpr 9840 |
. . . . . . 7
| |
| 17 | ltsopr 9854 |
. . . . . . . 8
| |
| 18 | sotric 5061 |
. . . . . . . 8
| |
| 19 | 17, 18 | mpan 706 |
. . . . . . 7
|
| 20 | 15, 16, 19 | syl2an 494 |
. . . . . 6
|
| 21 | 20 | an42s 870 |
. . . . 5
|
| 22 | enreceq 9887 |
. . . . . . 7
| |
| 23 | ltsrpr 9898 |
. . . . . . . . 9
| |
| 24 | addcompr 9843 |
. . . . . . . . . 10
| |
| 25 | addcompr 9843 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | breq12i 4662 |
. . . . . . . . 9
|
| 27 | 23, 26 | bitri 264 |
. . . . . . . 8
|
| 28 | 27 | a1i 11 |
. . . . . . 7
|
| 29 | 22, 28 | orbi12d 746 |
. . . . . 6
|
| 30 | 29 | notbid 308 |
. . . . 5
|
| 31 | 21, 30 | bitr4d 271 |
. . . 4
|
| 32 | 14, 31 | syl5bb 272 |
. . 3
|
| 33 | 1, 7, 13, 32 | 2ecoptocl 7838 |
. 2
|
| 34 | 2 | anbi1d 741 |
. . . 4
|
| 35 | breq1 4656 |
. . . 4
| |
| 36 | 34, 35 | imbi12d 334 |
. . 3
|
| 37 | breq1 4656 |
. . . . 5
| |
| 38 | 8, 37 | anbi12d 747 |
. . . 4
|
| 39 | 38 | imbi1d 331 |
. . 3
|
| 40 | breq2 4657 |
. . . . 5
| |
| 41 | 40 | anbi2d 740 |
. . . 4
|
| 42 | breq2 4657 |
. . . 4
| |
| 43 | 41, 42 | imbi12d 334 |
. . 3
|
| 44 | ovex 6678 |
. . . . . . . . . 10
| |
| 45 | ovex 6678 |
. . . . . . . . . 10
| |
| 46 | ltapr 9867 |
. . . . . . . . . 10
| |
| 47 | vex 3203 |
. . . . . . . . . 10
| |
| 48 | addcompr 9843 |
. . . . . . . . . 10
| |
| 49 | 44, 45, 46, 47, 48 | caovord2 6846 |
. . . . . . . . 9
|
| 50 | addasspr 9844 |
. . . . . . . . . 10
| |
| 51 | addasspr 9844 |
. . . . . . . . . 10
| |
| 52 | 50, 51 | breq12i 4662 |
. . . . . . . . 9
|
| 53 | 49, 52 | syl6bb 276 |
. . . . . . . 8
|
| 54 | 14, 53 | syl5bb 272 |
. . . . . . 7
|
| 55 | ltsrpr 9898 |
. . . . . . . 8
| |
| 56 | ltapr 9867 |
. . . . . . . 8
| |
| 57 | 55, 56 | syl5bb 272 |
. . . . . . 7
|
| 58 | 54, 57 | bi2anan9r 918 |
. . . . . 6
|
| 59 | ltrelpr 9820 |
. . . . . . . 8
| |
| 60 | 17, 59 | sotri 5523 |
. . . . . . 7
|
| 61 | dmplp 9834 |
. . . . . . . . 9
| |
| 62 | 0npr 9814 |
. . . . . . . . 9
| |
| 63 | ltapr 9867 |
. . . . . . . . 9
| |
| 64 | 61, 59, 62, 63 | ndmovordi 6825 |
. . . . . . . 8
|
| 65 | vex 3203 |
. . . . . . . . . 10
| |
| 66 | vex 3203 |
. . . . . . . . . 10
| |
| 67 | addasspr 9844 |
. . . . . . . . . 10
| |
| 68 | 65, 66, 47, 48, 67 | caov12 6862 |
. . . . . . . . 9
|
| 69 | vex 3203 |
. . . . . . . . . 10
| |
| 70 | vex 3203 |
. . . . . . . . . 10
| |
| 71 | 69, 66, 70, 48, 67 | caov12 6862 |
. . . . . . . . 9
|
| 72 | 68, 71 | breq12i 4662 |
. . . . . . . 8
|
| 73 | ltsrpr 9898 |
. . . . . . . 8
| |
| 74 | 64, 72, 73 | 3imtr4i 281 |
. . . . . . 7
|
| 75 | 60, 74 | syl 17 |
. . . . . 6
|
| 76 | 58, 75 | syl6bi 243 |
. . . . 5
|
| 77 | 76 | ad2ant2l 782 |
. . . 4
|
| 78 | 77 | 3adant2 1080 |
. . 3
|
| 79 | 1, 36, 39, 43, 78 | 3ecoptocl 7839 |
. 2
|
| 80 | 33, 79 | isso2i 5067 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ec 7744 df-qs 7748 df-ni 9694 df-pli 9695 df-mi 9696 df-lti 9697 df-plpq 9730 df-mpq 9731 df-ltpq 9732 df-enq 9733 df-nq 9734 df-erq 9735 df-plq 9736 df-mq 9737 df-1nq 9738 df-rq 9739 df-ltnq 9740 df-np 9803 df-plp 9805 df-ltp 9807 df-enr 9877 df-nr 9878 df-ltr 9881 |
| This theorem is referenced by: 1ne0sr 9917 addgt0sr 9925 sqgt0sr 9927 supsrlem 9932 axpre-lttri 9986 axpre-lttrn 9987 |
| Copyright terms: Public domain | W3C validator |