MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsosr Structured version   Visualization version   Unicode version

Theorem ltsosr 9915
Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltsosr  |-  <R  Or  R.

Proof of Theorem ltsosr
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 9878 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq1 4656 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  f  <R  [
<. z ,  w >. ]  ~R  ) )
3 eqeq1 2626 . . . . . 6  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  <->  f  =  [ <. z ,  w >. ]  ~R  ) )
4 breq2 4657 . . . . . 6  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. x ,  y >. ]  ~R  <->  [ <. z ,  w >. ]  ~R  <R  f
) )
53, 4orbi12d 746 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( ( [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( f  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  f ) ) )
65notbid 308 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( -.  ( [
<. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  -.  ( f  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  f )
) )
72, 6bibi12d 335 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  -.  ( [ <. x ,  y
>. ]  ~R  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  ) )  <-> 
( f  <R  [ <. z ,  w >. ]  ~R  <->  -.  ( f  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  f ) ) ) )
8 breq2 4657 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( f  <R  [ <. z ,  w >. ]  ~R  <->  f 
<R  g ) )
9 eqeq2 2633 . . . . . 6  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( f  =  [ <. z ,  w >. ]  ~R  <->  f  =  g ) )
10 breq1 4656 . . . . . 6  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( [ <. z ,  w >. ]  ~R  <R  f  <-> 
g  <R  f ) )
119, 10orbi12d 746 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( ( f  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  f )  <->  ( f  =  g  \/  g  <R  f )
) )
1211notbid 308 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( -.  ( f  =  [ <. z ,  w >. ]  ~R  \/  [
<. z ,  w >. ]  ~R  <R  f )  <->  -.  ( f  =  g  \/  g  <R  f
) ) )
138, 12bibi12d 335 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( ( f  <R  [ <. z ,  w >. ]  ~R  <->  -.  (
f  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  f
) )  <->  ( f  <R  g  <->  -.  ( f  =  g  \/  g  <R  f ) ) ) )
14 ltsrpr 9898 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
)
15 addclpr 9840 . . . . . . 7  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  +P.  w
)  e.  P. )
16 addclpr 9840 . . . . . . 7  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  +P.  z
)  e.  P. )
17 ltsopr 9854 . . . . . . . 8  |-  <P  Or  P.
18 sotric 5061 . . . . . . . 8  |-  ( ( 
<P  Or  P.  /\  (
( x  +P.  w
)  e.  P.  /\  ( y  +P.  z
)  e.  P. )
)  ->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  <->  -.  ( (
x  +P.  w )  =  ( y  +P.  z )  \/  (
y  +P.  z )  <P  ( x  +P.  w
) ) ) )
1917, 18mpan 706 . . . . . . 7  |-  ( ( ( x  +P.  w
)  e.  P.  /\  ( y  +P.  z
)  e.  P. )  ->  ( ( x  +P.  w )  <P  (
y  +P.  z )  <->  -.  ( ( x  +P.  w )  =  ( y  +P.  z )  \/  ( y  +P.  z )  <P  (
x  +P.  w )
) ) )
2015, 16, 19syl2an 494 . . . . . 6  |-  ( ( ( x  e.  P.  /\  w  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  <->  -.  ( (
x  +P.  w )  =  ( y  +P.  z )  \/  (
y  +P.  z )  <P  ( x  +P.  w
) ) ) )
2120an42s 870 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  <->  -.  ( (
x  +P.  w )  =  ( y  +P.  z )  \/  (
y  +P.  z )  <P  ( x  +P.  w
) ) ) )
22 enreceq 9887 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  =  ( y  +P.  z ) ) )
23 ltsrpr 9898 . . . . . . . . 9  |-  ( [
<. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) )
24 addcompr 9843 . . . . . . . . . 10  |-  ( z  +P.  y )  =  ( y  +P.  z
)
25 addcompr 9843 . . . . . . . . . 10  |-  ( w  +P.  x )  =  ( x  +P.  w
)
2624, 25breq12i 4662 . . . . . . . . 9  |-  ( ( z  +P.  y ) 
<P  ( w  +P.  x
)  <->  ( y  +P.  z )  <P  (
x  +P.  w )
)
2723, 26bitri 264 . . . . . . . 8  |-  ( [
<. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( y  +P.  z ) 
<P  ( x  +P.  w
) )
2827a1i 11 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( y  +P.  z ) 
<P  ( x  +P.  w
) ) )
2922, 28orbi12d 746 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  )  <->  ( (
x  +P.  w )  =  ( y  +P.  z )  \/  (
y  +P.  z )  <P  ( x  +P.  w
) ) ) )
3029notbid 308 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( -.  ( [ <. x ,  y
>. ]  ~R  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  )  <->  -.  (
( x  +P.  w
)  =  ( y  +P.  z )  \/  ( y  +P.  z
)  <P  ( x  +P.  w ) ) ) )
3121, 30bitr4d 271 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  <->  -.  ( [ <. x ,  y >. ]  ~R  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) ) )
3214, 31syl5bb 272 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  -.  ( [ <. x ,  y
>. ]  ~R  =  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  ) ) )
331, 7, 13, 322ecoptocl 7838 . 2  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  <R  g  <->  -.  ( f  =  g  \/  g  <R  f
) ) )
342anbi1d 741 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  <->  ( f  <R  [ <. z ,  w >. ]  ~R  /\  [
<. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )
) )
35 breq1 4656 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  f  <R  [
<. v ,  u >. ]  ~R  ) )
3634, 35imbi12d 334 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( ( ( [
<. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\  [
<. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  [ <. x ,  y
>. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) 
<->  ( ( f  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  )
) )
37 breq1 4656 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. v ,  u >. ]  ~R  <->  g  <R  [ <. v ,  u >. ]  ~R  ) )
388, 37anbi12d 747 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( ( f  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  <->  ( f  <R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )
) )
3938imbi1d 331 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( ( ( f 
<R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  )  <->  ( ( f  <R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  ) ) )
40 breq2 4657 . . . . 5  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( g  <R  [ <. v ,  u >. ]  ~R  <->  g 
<R  h ) )
4140anbi2d 740 . . . 4  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( ( f  <R 
g  /\  g  <R  [
<. v ,  u >. ]  ~R  )  <->  ( f  <R  g  /\  g  <R  h ) ) )
42 breq2 4657 . . . 4  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( f  <R  [ <. v ,  u >. ]  ~R  <->  f 
<R  h ) )
4341, 42imbi12d 334 . . 3  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( ( ( f 
<R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )  -> 
f  <R  [ <. v ,  u >. ]  ~R  )  <->  ( ( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) ) )
44 ovex 6678 . . . . . . . . . 10  |-  ( x  +P.  w )  e. 
_V
45 ovex 6678 . . . . . . . . . 10  |-  ( y  +P.  z )  e. 
_V
46 ltapr 9867 . . . . . . . . . 10  |-  ( h  e.  P.  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
47 vex 3203 . . . . . . . . . 10  |-  u  e. 
_V
48 addcompr 9843 . . . . . . . . . 10  |-  ( f  +P.  g )  =  ( g  +P.  f
)
4944, 45, 46, 47, 48caovord2 6846 . . . . . . . . 9  |-  ( u  e.  P.  ->  (
( x  +P.  w
)  <P  ( y  +P.  z )  <->  ( (
x  +P.  w )  +P.  u )  <P  (
( y  +P.  z
)  +P.  u )
) )
50 addasspr 9844 . . . . . . . . . 10  |-  ( ( x  +P.  w )  +P.  u )  =  ( x  +P.  (
w  +P.  u )
)
51 addasspr 9844 . . . . . . . . . 10  |-  ( ( y  +P.  z )  +P.  u )  =  ( y  +P.  (
z  +P.  u )
)
5250, 51breq12i 4662 . . . . . . . . 9  |-  ( ( ( x  +P.  w
)  +P.  u )  <P  ( ( y  +P.  z )  +P.  u
)  <->  ( x  +P.  ( w  +P.  u ) )  <P  ( y  +P.  ( z  +P.  u
) ) )
5349, 52syl6bb 276 . . . . . . . 8  |-  ( u  e.  P.  ->  (
( x  +P.  w
)  <P  ( y  +P.  z )  <->  ( x  +P.  ( w  +P.  u
) )  <P  (
y  +P.  ( z  +P.  u ) ) ) )
5414, 53syl5bb 272 . . . . . . 7  |-  ( u  e.  P.  ->  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  ( w  +P.  u ) ) 
<P  ( y  +P.  (
z  +P.  u )
) ) )
55 ltsrpr 9898 . . . . . . . 8  |-  ( [
<. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( z  +P.  u )  <P  (
w  +P.  v )
)
56 ltapr 9867 . . . . . . . 8  |-  ( y  e.  P.  ->  (
( z  +P.  u
)  <P  ( w  +P.  v )  <->  ( y  +P.  ( z  +P.  u
) )  <P  (
y  +P.  ( w  +P.  v ) ) ) )
5755, 56syl5bb 272 . . . . . . 7  |-  ( y  e.  P.  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( y  +P.  ( z  +P.  u ) ) 
<P  ( y  +P.  (
w  +P.  v )
) ) )
5854, 57bi2anan9r 918 . . . . . 6  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  <->  ( ( x  +P.  (
w  +P.  u )
)  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) ) ) )
59 ltrelpr 9820 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
6017, 59sotri 5523 . . . . . . 7  |-  ( ( ( x  +P.  (
w  +P.  u )
)  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )  ->  (
x  +P.  ( w  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )
61 dmplp 9834 . . . . . . . . 9  |-  dom  +P.  =  ( P.  X.  P. )
62 0npr 9814 . . . . . . . . 9  |-  -.  (/)  e.  P.
63 ltapr 9867 . . . . . . . . 9  |-  ( w  e.  P.  ->  (
( x  +P.  u
)  <P  ( y  +P.  v )  <->  ( w  +P.  ( x  +P.  u
) )  <P  (
w  +P.  ( y  +P.  v ) ) ) )
6461, 59, 62, 63ndmovordi 6825 . . . . . . . 8  |-  ( ( w  +P.  ( x  +P.  u ) ) 
<P  ( w  +P.  (
y  +P.  v )
)  ->  ( x  +P.  u )  <P  (
y  +P.  v )
)
65 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
66 vex 3203 . . . . . . . . . 10  |-  w  e. 
_V
67 addasspr 9844 . . . . . . . . . 10  |-  ( ( f  +P.  g )  +P.  h )  =  ( f  +P.  (
g  +P.  h )
)
6865, 66, 47, 48, 67caov12 6862 . . . . . . . . 9  |-  ( x  +P.  ( w  +P.  u ) )  =  ( w  +P.  (
x  +P.  u )
)
69 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
70 vex 3203 . . . . . . . . . 10  |-  v  e. 
_V
7169, 66, 70, 48, 67caov12 6862 . . . . . . . . 9  |-  ( y  +P.  ( w  +P.  v ) )  =  ( w  +P.  (
y  +P.  v )
)
7268, 71breq12i 4662 . . . . . . . 8  |-  ( ( x  +P.  ( w  +P.  u ) ) 
<P  ( y  +P.  (
w  +P.  v )
)  <->  ( w  +P.  ( x  +P.  u ) )  <P  ( w  +P.  ( y  +P.  v
) ) )
73 ltsrpr 9898 . . . . . . . 8  |-  ( [
<. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( x  +P.  u )  <P  (
y  +P.  v )
)
7464, 72, 733imtr4i 281 . . . . . . 7  |-  ( ( x  +P.  ( w  +P.  u ) ) 
<P  ( y  +P.  (
w  +P.  v )
)  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )
7560, 74syl 17 . . . . . 6  |-  ( ( ( x  +P.  (
w  +P.  u )
)  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )
7658, 75syl6bi 243 . . . . 5  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  [ <. x ,  y
>. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
7776ad2ant2l 782 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\ 
[ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
78773adant2 1080 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\ 
[ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
791, 36, 39, 43, 783ecoptocl 7839 . 2  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) )
8033, 79isso2i 5067 1  |-  <R  Or  R.
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653    Or wor 5034  (class class class)co 6650   [cec 7740   P.cnp 9681    +P. cpp 9683    <P cltp 9685    ~R cer 9686   R.cnr 9687    <R cltr 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-ltp 9807  df-enr 9877  df-nr 9878  df-ltr 9881
This theorem is referenced by:  1ne0sr  9917  addgt0sr  9925  sqgt0sr  9927  supsrlem  9932  axpre-lttri  9986  axpre-lttrn  9987
  Copyright terms: Public domain W3C validator