Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnldil Structured version   Visualization version   Unicode version

Theorem ltrnldil 35408
Description: A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnldil.h  |-  H  =  ( LHyp `  K
)
ltrnldil.d  |-  D  =  ( ( LDil `  K
) `  W )
ltrnldil.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnldil  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T )  ->  F  e.  D )

Proof of Theorem ltrnldil
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2622 . . 3  |-  ( join `  K )  =  (
join `  K )
3 eqid 2622 . . 3  |-  ( meet `  K )  =  (
meet `  K )
4 eqid 2622 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 ltrnldil.h . . 3  |-  H  =  ( LHyp `  K
)
6 ltrnldil.d . . 3  |-  D  =  ( ( LDil `  K
) `  W )
7 ltrnldil.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
81, 2, 3, 4, 5, 6, 7isltrn 35405 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  D  /\  A. p  e.  ( Atoms `  K ) A. q  e.  ( Atoms `  K )
( ( -.  p
( le `  K
) W  /\  -.  q ( le `  K ) W )  ->  ( ( p ( join `  K
) ( F `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( F `
 q ) ) ( meet `  K
) W ) ) ) ) )
98simprbda 653 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T )  ->  F  e.  D )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   LHypclh 35270   LDilcldil 35386   LTrncltrn 35387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-ltrn 35391
This theorem is referenced by:  ltrnlaut  35409  ltrnval1  35420  ltrncnv  35432  ltrnco  36007
  Copyright terms: Public domain W3C validator