MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetfval Structured version   Visualization version   Unicode version

Theorem mdetfval 20392
Description: First substitution for the determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mdetfval.d  |-  D  =  ( N maDet  R )
mdetfval.a  |-  A  =  ( N Mat  R )
mdetfval.b  |-  B  =  ( Base `  A
)
mdetfval.p  |-  P  =  ( Base `  ( SymGrp `
 N ) )
mdetfval.y  |-  Y  =  ( ZRHom `  R
)
mdetfval.s  |-  S  =  (pmSgn `  N )
mdetfval.t  |-  .x.  =  ( .r `  R )
mdetfval.u  |-  U  =  (mulGrp `  R )
Assertion
Ref Expression
mdetfval  |-  D  =  ( m  e.  B  |->  ( R  gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S ) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) )
Distinct variable groups:    B, m    m, p, x, N    P, m    R, m, p, x    S, m    .x. , m    U, m    m, Y
Allowed substitution hints:    A( x, m, p)    B( x, p)    D( x, m, p)    P( x, p)    S( x, p)    .x. ( x, p)    U( x, p)    Y( x, p)

Proof of Theorem mdetfval
Dummy variables  y 
z  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetfval.d . 2  |-  D  =  ( N maDet  R )
2 oveq12 6659 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  ( N Mat  R
) )
3 mdetfval.a . . . . . . . 8  |-  A  =  ( N Mat  R )
42, 3syl6eqr 2674 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  A )
54fveq2d 6195 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  ( Base `  A
) )
6 mdetfval.b . . . . . 6  |-  B  =  ( Base `  A
)
75, 6syl6eqr 2674 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  B )
8 simpr 477 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  r  =  R )
9 simpl 473 . . . . . . . . . 10  |-  ( ( n  =  N  /\  r  =  R )  ->  n  =  N )
109fveq2d 6195 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( SymGrp `  n )  =  ( SymGrp `  N
) )
1110fveq2d 6195 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  ( SymGrp `
 n ) )  =  ( Base `  ( SymGrp `
 N ) ) )
12 mdetfval.p . . . . . . . 8  |-  P  =  ( Base `  ( SymGrp `
 N ) )
1311, 12syl6eqr 2674 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  ( SymGrp `
 n ) )  =  P )
14 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
1514adantl 482 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( .r `  r
)  =  ( .r
`  R ) )
16 mdetfval.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
1715, 16syl6eqr 2674 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( .r `  r
)  =  .x.  )
188fveq2d 6195 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ZRHom `  r
)  =  ( ZRHom `  R ) )
19 mdetfval.y . . . . . . . . . . 11  |-  Y  =  ( ZRHom `  R
)
2018, 19syl6eqr 2674 . . . . . . . . . 10  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ZRHom `  r
)  =  Y )
21 fveq2 6191 . . . . . . . . . . . 12  |-  ( n  =  N  ->  (pmSgn `  n )  =  (pmSgn `  N ) )
2221adantr 481 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  r  =  R )  ->  (pmSgn `  n )  =  (pmSgn `  N )
)
23 mdetfval.s . . . . . . . . . . 11  |-  S  =  (pmSgn `  N )
2422, 23syl6eqr 2674 . . . . . . . . . 10  |-  ( ( n  =  N  /\  r  =  R )  ->  (pmSgn `  n )  =  S )
2520, 24coeq12d 5286 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ( ZRHom `  r )  o.  (pmSgn `  n ) )  =  ( Y  o.  S
) )
2625fveq1d 6193 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ( ( ZRHom `  r )  o.  (pmSgn `  n ) ) `  p )  =  ( ( Y  o.  S
) `  p )
)
27 fveq2 6191 . . . . . . . . . . 11  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
2827adantl 482 . . . . . . . . . 10  |-  ( ( n  =  N  /\  r  =  R )  ->  (mulGrp `  r )  =  (mulGrp `  R )
)
29 mdetfval.u . . . . . . . . . 10  |-  U  =  (mulGrp `  R )
3028, 29syl6eqr 2674 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  (mulGrp `  r )  =  U )
319mpteq1d 4738 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( x  e.  n  |->  ( ( p `  x ) m x ) )  =  ( x  e.  N  |->  ( ( p `  x
) m x ) ) )
3230, 31oveq12d 6668 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( (mulGrp `  r
)  gsumg  ( x  e.  n  |->  ( ( p `  x ) m x ) ) )  =  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) )
3317, 26, 32oveq123d 6671 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ( ( ( ZRHom `  r )  o.  (pmSgn `  n )
) `  p )
( .r `  r
) ( (mulGrp `  r )  gsumg  ( x  e.  n  |->  ( ( p `  x ) m x ) ) ) )  =  ( ( ( Y  o.  S ) `
 p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) )
3413, 33mpteq12dv 4733 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( p  e.  (
Base `  ( SymGrp `  n ) )  |->  ( ( ( ( ZRHom `  r )  o.  (pmSgn `  n ) ) `  p ) ( .r
`  r ) ( (mulGrp `  r )  gsumg  ( x  e.  n  |->  ( ( p `  x
) m x ) ) ) ) )  =  ( p  e.  P  |->  ( ( ( Y  o.  S ) `
 p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) )
358, 34oveq12d 6668 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( r  gsumg  ( p  e.  (
Base `  ( SymGrp `  n ) )  |->  ( ( ( ( ZRHom `  r )  o.  (pmSgn `  n ) ) `  p ) ( .r
`  r ) ( (mulGrp `  r )  gsumg  ( x  e.  n  |->  ( ( p `  x
) m x ) ) ) ) ) )  =  ( R 
gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S ) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) )
367, 35mpteq12dv 4733 . . . 4  |-  ( ( n  =  N  /\  r  =  R )  ->  ( m  e.  (
Base `  ( n Mat  r ) )  |->  ( r  gsumg  ( p  e.  (
Base `  ( SymGrp `  n ) )  |->  ( ( ( ( ZRHom `  r )  o.  (pmSgn `  n ) ) `  p ) ( .r
`  r ) ( (mulGrp `  r )  gsumg  ( x  e.  n  |->  ( ( p `  x
) m x ) ) ) ) ) ) )  =  ( m  e.  B  |->  ( R  gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S ) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) ) )
37 df-mdet 20391 . . . 4  |- maDet  =  ( n  e.  _V , 
r  e.  _V  |->  ( m  e.  ( Base `  ( n Mat  r ) )  |->  ( r  gsumg  ( p  e.  ( Base `  ( SymGrp `
 n ) ) 
|->  ( ( ( ( ZRHom `  r )  o.  (pmSgn `  n )
) `  p )
( .r `  r
) ( (mulGrp `  r )  gsumg  ( x  e.  n  |->  ( ( p `  x ) m x ) ) ) ) ) ) ) )
38 fvex 6201 . . . . . 6  |-  ( Base `  A )  e.  _V
396, 38eqeltri 2697 . . . . 5  |-  B  e. 
_V
4039mptex 6486 . . . 4  |-  ( m  e.  B  |->  ( R 
gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S ) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) )  e. 
_V
4136, 37, 40ovmpt2a 6791 . . 3  |-  ( ( N  e.  _V  /\  R  e.  _V )  ->  ( N maDet  R )  =  ( m  e.  B  |->  ( R  gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S
) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) ) )
4237reldmmpt2 6771 . . . . . 6  |-  Rel  dom maDet
4342ovprc 6683 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N maDet  R )  =  (/) )
44 mpt0 6021 . . . . 5  |-  ( m  e.  (/)  |->  ( R  gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S
) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) )  =  (/)
4543, 44syl6eqr 2674 . . . 4  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N maDet  R )  =  ( m  e.  (/)  |->  ( R  gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S
) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) ) )
46 df-mat 20214 . . . . . . . . . 10  |- Mat  =  ( y  e.  Fin , 
z  e.  _V  |->  ( ( z freeLMod  ( y  X.  y ) ) sSet  <. ( .r `  ndx ) ,  ( z maMul  <.
y ,  y ,  y >. ) >. )
)
4746reldmmpt2 6771 . . . . . . . . 9  |-  Rel  dom Mat
4847ovprc 6683 . . . . . . . 8  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N Mat  R )  =  (/) )
493, 48syl5eq 2668 . . . . . . 7  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  A  =  (/) )
5049fveq2d 6195 . . . . . 6  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( Base `  A
)  =  ( Base `  (/) ) )
51 base0 15912 . . . . . 6  |-  (/)  =  (
Base `  (/) )
5250, 6, 513eqtr4g 2681 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  B  =  (/) )
5352mpteq1d 4738 . . . 4  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( m  e.  B  |->  ( R  gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S ) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) )  =  ( m  e.  (/)  |->  ( R  gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S ) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) ) )
5445, 53eqtr4d 2659 . . 3  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N maDet  R )  =  ( m  e.  B  |->  ( R  gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S
) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) ) )
5541, 54pm2.61i 176 . 2  |-  ( N maDet 
R )  =  ( m  e.  B  |->  ( R  gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S ) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) )
561, 55eqtri 2644 1  |-  D  =  ( m  e.  B  |->  ( R  gsumg  ( p  e.  P  |->  ( ( ( Y  o.  S ) `  p )  .x.  ( U  gsumg  ( x  e.  N  |->  ( ( p `  x ) m x ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   <.cop 4183   <.cotp 4185    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   ` cfv 5888  (class class class)co 6650   Fincfn 7955   ndxcnx 15854   sSet csts 15855   Basecbs 15857   .rcmulr 15942    gsumg cgsu 16101   SymGrpcsymg 17797  pmSgncpsgn 17909  mulGrpcmgp 18489   ZRHomczrh 19848   freeLMod cfrlm 20090   maMul cmmul 20189   Mat cmat 20213   maDet cmdat 20390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-slot 15861  df-base 15863  df-mat 20214  df-mdet 20391
This theorem is referenced by:  mdetleib  20393  nfimdetndef  20395  mdetfval1  20396  mdet0pr  20398  mdetf  20401
  Copyright terms: Public domain W3C validator