| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgm2nsgrplem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma 3 for mgm2nsgrp 17409. (Contributed by AV, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgm2nsgrp.s |
|
| mgm2nsgrp.b |
|
| mgm2nsgrp.o |
|
| mgm2nsgrp.p |
|
| Ref | Expression |
|---|---|
| mgm2nsgrplem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4295 |
. . 3
| |
| 2 | mgm2nsgrp.s |
. . 3
| |
| 3 | 1, 2 | syl6eleqr 2712 |
. 2
|
| 4 | prid2g 4296 |
. . 3
| |
| 5 | 4, 2 | syl6eleqr 2712 |
. 2
|
| 6 | mgm2nsgrp.p |
. . . . 5
| |
| 7 | mgm2nsgrp.o |
. . . . 5
| |
| 8 | 6, 7 | eqtri 2644 |
. . . 4
|
| 9 | 8 | a1i 11 |
. . 3
|
| 10 | simprl 794 |
. . . . 5
| |
| 11 | simpr 477 |
. . . . . 6
| |
| 12 | ifeq1 4090 |
. . . . . . . . . . 11
| |
| 13 | ifid 4125 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | syl6eq 2672 |
. . . . . . . . . 10
|
| 15 | 14 | a1d 25 |
. . . . . . . . 9
|
| 16 | eqeq1 2626 |
. . . . . . . . . . . . . . . . 17
| |
| 17 | 16 | biimpcd 239 |
. . . . . . . . . . . . . . . 16
|
| 18 | 17 | adantl 482 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | com12 32 |
. . . . . . . . . . . . . 14
|
| 20 | 19 | adantl 482 |
. . . . . . . . . . . . 13
|
| 21 | 20 | con3d 148 |
. . . . . . . . . . . 12
|
| 22 | 21 | impcom 446 |
. . . . . . . . . . 11
|
| 23 | 22 | iffalsed 4097 |
. . . . . . . . . 10
|
| 24 | 23 | ex 450 |
. . . . . . . . 9
|
| 25 | 15, 24 | pm2.61i 176 |
. . . . . . . 8
|
| 26 | 25 | adantl 482 |
. . . . . . 7
|
| 27 | simpl 473 |
. . . . . . 7
| |
| 28 | simpr 477 |
. . . . . . 7
| |
| 29 | 9, 26, 27, 28, 27 | ovmpt2d 6788 |
. . . . . 6
|
| 30 | 11, 29 | sylan9eqr 2678 |
. . . . 5
|
| 31 | 10, 30 | jca 554 |
. . . 4
|
| 32 | 31 | iftrued 4094 |
. . 3
|
| 33 | 29, 27 | eqeltrd 2701 |
. . 3
|
| 34 | 9, 32, 27, 33, 28 | ovmpt2d 6788 |
. 2
|
| 35 | 3, 5, 34 | syl2an 494 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: mgm2nsgrplem4 17408 |
| Copyright terms: Public domain | W3C validator |