MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm2nsgrplem2 Structured version   Visualization version   Unicode version

Theorem mgm2nsgrplem2 17406
Description: Lemma 2 for mgm2nsgrp 17409. (Contributed by AV, 27-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s  |-  S  =  { A ,  B }
mgm2nsgrp.b  |-  ( Base `  M )  =  S
mgm2nsgrp.o  |-  ( +g  `  M )  =  ( x  e.  S , 
y  e.  S  |->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A ) )
mgm2nsgrp.p  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
mgm2nsgrplem2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  .o.  A )  .o.  B
)  =  A )
Distinct variable groups:    x, S, y    x, A, y    x, B, y    x, M    x,  .o. , y
Allowed substitution hints:    M( y)    V( x, y)    W( x, y)

Proof of Theorem mgm2nsgrplem2
StepHypRef Expression
1 prid1g 4295 . . 3  |-  ( A  e.  V  ->  A  e.  { A ,  B } )
2 mgm2nsgrp.s . . 3  |-  S  =  { A ,  B }
31, 2syl6eleqr 2712 . 2  |-  ( A  e.  V  ->  A  e.  S )
4 prid2g 4296 . . 3  |-  ( B  e.  W  ->  B  e.  { A ,  B } )
54, 2syl6eleqr 2712 . 2  |-  ( B  e.  W  ->  B  e.  S )
6 mgm2nsgrp.p . . . . 5  |-  .o.  =  ( +g  `  M )
7 mgm2nsgrp.o . . . . 5  |-  ( +g  `  M )  =  ( x  e.  S , 
y  e.  S  |->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A ) )
86, 7eqtri 2644 . . . 4  |-  .o.  =  ( x  e.  S ,  y  e.  S  |->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A ) )
98a1i 11 . . 3  |-  ( ( A  e.  S  /\  B  e.  S )  ->  .o.  =  ( x  e.  S ,  y  e.  S  |->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A ) ) )
10 ifeq1 4090 . . . . . . 7  |-  ( B  =  A  ->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A )  =  if ( ( x  =  A  /\  y  =  A ) ,  A ,  A ) )
11 ifid 4125 . . . . . . 7  |-  if ( ( x  =  A  /\  y  =  A ) ,  A ,  A )  =  A
1210, 11syl6eq 2672 . . . . . 6  |-  ( B  =  A  ->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A )  =  A )
1312a1d 25 . . . . 5  |-  ( B  =  A  ->  (
y  =  B  ->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A )  =  A ) )
14 eqeq1 2626 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
y  =  A  <->  B  =  A ) )
1514bicomd 213 . . . . . . . . . 10  |-  ( y  =  B  ->  ( B  =  A  <->  y  =  A ) )
1615notbid 308 . . . . . . . . 9  |-  ( y  =  B  ->  ( -.  B  =  A  <->  -.  y  =  A ) )
1716biimpac 503 . . . . . . . 8  |-  ( ( -.  B  =  A  /\  y  =  B )  ->  -.  y  =  A )
1817intnand 962 . . . . . . 7  |-  ( ( -.  B  =  A  /\  y  =  B )  ->  -.  (
x  =  A  /\  y  =  A )
)
1918iffalsed 4097 . . . . . 6  |-  ( ( -.  B  =  A  /\  y  =  B )  ->  if (
( x  =  A  /\  y  =  A ) ,  B ,  A )  =  A )
2019ex 450 . . . . 5  |-  ( -.  B  =  A  -> 
( y  =  B  ->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A )  =  A ) )
2113, 20pm2.61i 176 . . . 4  |-  ( y  =  B  ->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A )  =  A )
2221ad2antll 765 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( x  =  ( A  .o.  A )  /\  y  =  B ) )  ->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A )  =  A )
23 iftrue 4092 . . . . . 6  |-  ( ( x  =  A  /\  y  =  A )  ->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A )  =  B )
2423adantl 482 . . . . 5  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( x  =  A  /\  y  =  A ) )  ->  if ( ( x  =  A  /\  y  =  A ) ,  B ,  A )  =  B )
25 simpl 473 . . . . 5  |-  ( ( A  e.  S  /\  B  e.  S )  ->  A  e.  S )
26 simpr 477 . . . . 5  |-  ( ( A  e.  S  /\  B  e.  S )  ->  B  e.  S )
279, 24, 25, 25, 26ovmpt2d 6788 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  .o.  A
)  =  B )
2827, 26eqeltrd 2701 . . 3  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  .o.  A
)  e.  S )
299, 22, 28, 26, 25ovmpt2d 6788 . 2  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( ( A  .o.  A )  .o.  B
)  =  A )
303, 5, 29syl2an 494 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  .o.  A )  .o.  B
)  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   {cpr 4179   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   +g cplusg 15941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  mgm2nsgrplem4  17408
  Copyright terms: Public domain W3C validator