MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minmar1fval Structured version   Visualization version   Unicode version

Theorem minmar1fval 20452
Description: First substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
Hypotheses
Ref Expression
minmar1fval.a  |-  A  =  ( N Mat  R )
minmar1fval.b  |-  B  =  ( Base `  A
)
minmar1fval.q  |-  Q  =  ( N minMatR1  R )
minmar1fval.o  |-  .1.  =  ( 1r `  R )
minmar1fval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
minmar1fval  |-  Q  =  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i m j ) ) ) ) )
Distinct variable groups:    B, m    i, N, j, k, l, m    R, i, j, k, l, m
Allowed substitution hints:    A( i, j, k, m, l)    B( i, j, k, l)    Q( i, j, k, m, l)    .1. ( i, j, k, m, l)    .0. ( i, j, k, m, l)

Proof of Theorem minmar1fval
Dummy variables  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minmar1fval.q . 2  |-  Q  =  ( N minMatR1  R )
2 oveq12 6659 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  ( N Mat  R
) )
3 minmar1fval.a . . . . . . . 8  |-  A  =  ( N Mat  R )
42, 3syl6eqr 2674 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  A )
54fveq2d 6195 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  ( Base `  A
) )
6 minmar1fval.b . . . . . 6  |-  B  =  ( Base `  A
)
75, 6syl6eqr 2674 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  B )
8 simpl 473 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  n  =  N )
9 fveq2 6191 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
10 minmar1fval.o . . . . . . . . . . 11  |-  .1.  =  ( 1r `  R )
119, 10syl6eqr 2674 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
12 fveq2 6191 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
13 minmar1fval.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  R )
1412, 13syl6eqr 2674 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
1511, 14ifeq12d 4106 . . . . . . . . 9  |-  ( r  =  R  ->  if ( j  =  l ,  ( 1r `  r ) ,  ( 0g `  r ) )  =  if ( j  =  l ,  .1.  ,  .0.  )
)
1615ifeq1d 4104 . . . . . . . 8  |-  ( r  =  R  ->  if ( i  =  k ,  if ( j  =  l ,  ( 1r `  r ) ,  ( 0g `  r ) ) ,  ( i m j ) )  =  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i m j ) ) )
1716adantl 482 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  if ( i  =  k ,  if ( j  =  l ,  ( 1r `  r
) ,  ( 0g
`  r ) ) ,  ( i m j ) )  =  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i m j ) ) )
188, 8, 17mpt2eq123dv 6717 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  ( 1r `  r
) ,  ( 0g
`  r ) ) ,  ( i m j ) ) )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i
m j ) ) ) )
198, 8, 18mpt2eq123dv 6717 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  ( 1r `  r
) ,  ( 0g
`  r ) ) ,  ( i m j ) ) ) )  =  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i m j ) ) ) ) )
207, 19mpteq12dv 4733 . . . 4  |-  ( ( n  =  N  /\  r  =  R )  ->  ( m  e.  (
Base `  ( n Mat  r ) )  |->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  ( 1r `  r ) ,  ( 0g `  r ) ) ,  ( i m j ) ) ) ) )  =  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i m j ) ) ) ) ) )
21 df-minmar1 20441 . . . 4  |- minMatR1  =  ( n  e.  _V , 
r  e.  _V  |->  ( m  e.  ( Base `  ( n Mat  r ) )  |->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  ( 1r `  r ) ,  ( 0g `  r ) ) ,  ( i m j ) ) ) ) ) )
22 fvex 6201 . . . . . 6  |-  ( Base `  A )  e.  _V
236, 22eqeltri 2697 . . . . 5  |-  B  e. 
_V
2423mptex 6486 . . . 4  |-  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i m j ) ) ) ) )  e. 
_V
2520, 21, 24ovmpt2a 6791 . . 3  |-  ( ( N  e.  _V  /\  R  e.  _V )  ->  ( N minMatR1  R )  =  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
2621mpt2ndm0 6875 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N minMatR1  R )  =  (/) )
27 mpt0 6021 . . . . 5  |-  ( m  e.  (/)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i
m j ) ) ) ) )  =  (/)
2826, 27syl6eqr 2674 . . . 4  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N minMatR1  R )  =  ( m  e.  (/)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
293fveq2i 6194 . . . . . . 7  |-  ( Base `  A )  =  (
Base `  ( N Mat  R ) )
306, 29eqtri 2644 . . . . . 6  |-  B  =  ( Base `  ( N Mat  R ) )
31 matbas0pc 20215 . . . . . 6  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( Base `  ( N Mat  R ) )  =  (/) )
3230, 31syl5eq 2668 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  B  =  (/) )
3332mpteq1d 4738 . . . 4  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i m j ) ) ) ) )  =  ( m  e.  (/)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i m j ) ) ) ) ) )
3428, 33eqtr4d 2659 . . 3  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N minMatR1  R )  =  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
3525, 34pm2.61i 176 . 2  |-  ( N minMatR1  R )  =  ( m  e.  B  |->  ( k  e.  N , 
l  e.  N  |->  ( i  e.  N , 
j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i m j ) ) ) ) )
361, 35eqtri 2644 1  |-  Q  =  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  .1.  ,  .0.  ) ,  ( i m j ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   0gc0g 16100   1rcur 18501   Mat cmat 20213   minMatR1 cminmar1 20439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-slot 15861  df-base 15863  df-mat 20214  df-minmar1 20441
This theorem is referenced by:  minmar1val0  20453
  Copyright terms: Public domain W3C validator