MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirfv Structured version   Visualization version   Unicode version

Theorem mirfv 25551
Description: Value of the point inversion function  M. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p  |-  P  =  ( Base `  G
)
mirval.d  |-  .-  =  ( dist `  G )
mirval.i  |-  I  =  (Itv `  G )
mirval.l  |-  L  =  (LineG `  G )
mirval.s  |-  S  =  (pInvG `  G )
mirval.g  |-  ( ph  ->  G  e. TarskiG )
mirval.a  |-  ( ph  ->  A  e.  P )
mirfv.m  |-  M  =  ( S `  A
)
mirfv.b  |-  ( ph  ->  B  e.  P )
Assertion
Ref Expression
mirfv  |-  ( ph  ->  ( M `  B
)  =  ( iota_ z  e.  P  ( ( A  .-  z )  =  ( A  .-  B )  /\  A  e.  ( z I B ) ) ) )
Distinct variable groups:    z, A    z, B    z, G    z, M    z, I    z, P    ph, z    z,  .-
Allowed substitution hints:    S( z)    L( z)

Proof of Theorem mirfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mirfv.m . . 3  |-  M  =  ( S `  A
)
2 mirval.p . . . 4  |-  P  =  ( Base `  G
)
3 mirval.d . . . 4  |-  .-  =  ( dist `  G )
4 mirval.i . . . 4  |-  I  =  (Itv `  G )
5 mirval.l . . . 4  |-  L  =  (LineG `  G )
6 mirval.s . . . 4  |-  S  =  (pInvG `  G )
7 mirval.g . . . 4  |-  ( ph  ->  G  e. TarskiG )
8 mirval.a . . . 4  |-  ( ph  ->  A  e.  P )
92, 3, 4, 5, 6, 7, 8mirval 25550 . . 3  |-  ( ph  ->  ( S `  A
)  =  ( y  e.  P  |->  ( iota_ z  e.  P  ( ( A  .-  z )  =  ( A  .-  y )  /\  A  e.  ( z I y ) ) ) ) )
101, 9syl5eq 2668 . 2  |-  ( ph  ->  M  =  ( y  e.  P  |->  ( iota_ z  e.  P  ( ( A  .-  z )  =  ( A  .-  y )  /\  A  e.  ( z I y ) ) ) ) )
11 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  y  =  B )  /\  z  e.  P )  ->  y  =  B )
1211oveq2d 6666 . . . . 5  |-  ( ( ( ph  /\  y  =  B )  /\  z  e.  P )  ->  ( A  .-  y )  =  ( A  .-  B
) )
1312eqeq2d 2632 . . . 4  |-  ( ( ( ph  /\  y  =  B )  /\  z  e.  P )  ->  (
( A  .-  z
)  =  ( A 
.-  y )  <->  ( A  .-  z )  =  ( A  .-  B ) ) )
1411oveq2d 6666 . . . . 5  |-  ( ( ( ph  /\  y  =  B )  /\  z  e.  P )  ->  (
z I y )  =  ( z I B ) )
1514eleq2d 2687 . . . 4  |-  ( ( ( ph  /\  y  =  B )  /\  z  e.  P )  ->  ( A  e.  ( z
I y )  <->  A  e.  ( z I B ) ) )
1613, 15anbi12d 747 . . 3  |-  ( ( ( ph  /\  y  =  B )  /\  z  e.  P )  ->  (
( ( A  .-  z )  =  ( A  .-  y )  /\  A  e.  ( z I y ) )  <->  ( ( A 
.-  z )  =  ( A  .-  B
)  /\  A  e.  ( z I B ) ) ) )
1716riotabidva 6627 . 2  |-  ( (
ph  /\  y  =  B )  ->  ( iota_ z  e.  P  ( ( A  .-  z
)  =  ( A 
.-  y )  /\  A  e.  ( z
I y ) ) )  =  ( iota_ z  e.  P  ( ( A  .-  z )  =  ( A  .-  B )  /\  A  e.  ( z I B ) ) ) )
18 mirfv.b . 2  |-  ( ph  ->  B  e.  P )
19 riotaex 6615 . . 3  |-  ( iota_ z  e.  P  ( ( A  .-  z )  =  ( A  .-  B )  /\  A  e.  ( z I B ) ) )  e. 
_V
2019a1i 11 . 2  |-  ( ph  ->  ( iota_ z  e.  P  ( ( A  .-  z )  =  ( A  .-  B )  /\  A  e.  ( z I B ) ) )  e.  _V )
2110, 17, 18, 20fvmptd 6288 1  |-  ( ph  ->  ( M `  B
)  =  ( iota_ z  e.  P  ( ( A  .-  z )  =  ( A  .-  B )  /\  A  e.  ( z I B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-mir 25548
This theorem is referenced by:  mircgr  25552  mirbtwn  25553  ismir  25554  mirf  25555  mireq  25560
  Copyright terms: Public domain W3C validator