| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2ani | Structured version Visualization version Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mp2ani.1 |
|
| mp2ani.2 |
|
| mp2ani.3 |
|
| Ref | Expression |
|---|---|
| mp2ani |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2ani.2 |
. 2
| |
| 2 | mp2ani.1 |
. . 3
| |
| 3 | mp2ani.3 |
. . 3
| |
| 4 | 2, 3 | mpani 712 |
. 2
|
| 5 | 1, 4 | mpi 20 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: dfom3 8544 dfac5lem4 8949 dfac9 8958 cflem 9068 canthp1lem2 9475 addsrpr 9896 mulsrpr 9897 trclublem 13734 gcdaddmlem 15245 sto1i 29095 stji1i 29101 kur14lem9 31196 dfon2lem4 31691 rtrclex 37924 comptiunov2i 37998 |
| Copyright terms: Public domain | W3C validator |