Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem9 Structured version   Visualization version   Unicode version

Theorem kur14lem9 31196
Description: Lemma for kur14 31198. Since the set  T is closed under closure and complement, it contains the minimal set  S as a subset, so  S also has at most  1 4 elements. (Indeed  S  =  T, and it's not hard to prove this, but we don't need it for this proof.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j  |-  J  e. 
Top
kur14lem.x  |-  X  = 
U. J
kur14lem.k  |-  K  =  ( cls `  J
)
kur14lem.i  |-  I  =  ( int `  J
)
kur14lem.a  |-  A  C_  X
kur14lem.b  |-  B  =  ( X  \  ( K `  A )
)
kur14lem.c  |-  C  =  ( K `  ( X  \  A ) )
kur14lem.d  |-  D  =  ( I `  ( K `  A )
)
kur14lem.t  |-  T  =  ( ( ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } )  u.  ( { ( I `  C ) ,  ( K `  D ) ,  ( I `  ( K `
 B ) ) }  u.  { ( K `  ( I `
 C ) ) ,  ( I `  ( K `  ( I `
 A ) ) ) } ) )
kur14lem.s  |-  S  = 
|^| { x  e.  ~P ~P X  |  ( A  e.  x  /\  A. y  e.  x  {
( X  \  y
) ,  ( K `
 y ) } 
C_  x ) }
Assertion
Ref Expression
kur14lem9  |-  ( S  e.  Fin  /\  ( # `
 S )  <_ ; 1 4 )
Distinct variable groups:    x, A    x, K    x, y, T   
x, X, y
Allowed substitution hints:    A( y)    B( x, y)    C( x, y)    D( x, y)    S( x, y)    I( x, y)    J( x, y)    K( y)

Proof of Theorem kur14lem9
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 kur14lem.s . . 3  |-  S  = 
|^| { x  e.  ~P ~P X  |  ( A  e.  x  /\  A. y  e.  x  {
( X  \  y
) ,  ( K `
 y ) } 
C_  x ) }
2 vex 3203 . . . . . 6  |-  s  e. 
_V
32elintrab 4488 . . . . 5  |-  ( s  e.  |^| { x  e. 
~P ~P X  | 
( A  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) } 
<-> 
A. x  e.  ~P  ~P X ( ( A  e.  x  /\  A. y  e.  x  {
( X  \  y
) ,  ( K `
 y ) } 
C_  x )  -> 
s  e.  x ) )
4 ssun1 3776 . . . . . . . 8  |-  { A ,  ( X  \  A ) ,  ( K `  A ) }  C_  ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C ,  ( I `
 A ) } )
5 ssun1 3776 . . . . . . . . 9  |-  ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  C_  ( ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C ,  ( I `
 A ) } )  u.  { ( K `  B ) ,  D ,  ( K `  ( I `
 A ) ) } )
6 ssun1 3776 . . . . . . . . . 10  |-  ( ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } ) 
C_  ( ( ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } )  u.  ( { ( I `  C ) ,  ( K `  D ) ,  ( I `  ( K `
 B ) ) }  u.  { ( K `  ( I `
 C ) ) ,  ( I `  ( K `  ( I `
 A ) ) ) } ) )
7 kur14lem.t . . . . . . . . . 10  |-  T  =  ( ( ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } )  u.  ( { ( I `  C ) ,  ( K `  D ) ,  ( I `  ( K `
 B ) ) }  u.  { ( K `  ( I `
 C ) ) ,  ( I `  ( K `  ( I `
 A ) ) ) } ) )
86, 7sseqtr4i 3638 . . . . . . . . 9  |-  ( ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } ) 
C_  T
95, 8sstri 3612 . . . . . . . 8  |-  ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  C_  T
104, 9sstri 3612 . . . . . . 7  |-  { A ,  ( X  \  A ) ,  ( K `  A ) }  C_  T
11 kur14lem.j . . . . . . . . . . 11  |-  J  e. 
Top
12 kur14lem.x . . . . . . . . . . . 12  |-  X  = 
U. J
1312topopn 20711 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  X  e.  J )
1411, 13ax-mp 5 . . . . . . . . . 10  |-  X  e.  J
1514elexi 3213 . . . . . . . . 9  |-  X  e. 
_V
16 kur14lem.a . . . . . . . . 9  |-  A  C_  X
1715, 16ssexi 4803 . . . . . . . 8  |-  A  e. 
_V
1817tpid1 4303 . . . . . . 7  |-  A  e. 
{ A ,  ( X  \  A ) ,  ( K `  A ) }
1910, 18sselii 3600 . . . . . 6  |-  A  e.  T
20 kur14lem.k . . . . . . . . 9  |-  K  =  ( cls `  J
)
21 kur14lem.i . . . . . . . . 9  |-  I  =  ( int `  J
)
22 kur14lem.b . . . . . . . . 9  |-  B  =  ( X  \  ( K `  A )
)
23 kur14lem.c . . . . . . . . 9  |-  C  =  ( K `  ( X  \  A ) )
24 kur14lem.d . . . . . . . . 9  |-  D  =  ( I `  ( K `  A )
)
2511, 12, 20, 21, 16, 22, 23, 24, 7kur14lem7 31194 . . . . . . . 8  |-  ( y  e.  T  ->  (
y  C_  X  /\  { ( X  \  y
) ,  ( K `
 y ) } 
C_  T ) )
2625simprd 479 . . . . . . 7  |-  ( y  e.  T  ->  { ( X  \  y ) ,  ( K `  y ) }  C_  T )
2726rgen 2922 . . . . . 6  |-  A. y  e.  T  { ( X  \  y ) ,  ( K `  y
) }  C_  T
2825simpld 475 . . . . . . . . . 10  |-  ( y  e.  T  ->  y  C_  X )
2915elpw2 4828 . . . . . . . . . 10  |-  ( y  e.  ~P X  <->  y  C_  X )
3028, 29sylibr 224 . . . . . . . . 9  |-  ( y  e.  T  ->  y  e.  ~P X )
3130ssriv 3607 . . . . . . . 8  |-  T  C_  ~P X
3215pwex 4848 . . . . . . . . 9  |-  ~P X  e.  _V
3332elpw2 4828 . . . . . . . 8  |-  ( T  e.  ~P ~P X  <->  T 
C_  ~P X )
3431, 33mpbir 221 . . . . . . 7  |-  T  e. 
~P ~P X
35 eleq2 2690 . . . . . . . . . 10  |-  ( x  =  T  ->  ( A  e.  x  <->  A  e.  T ) )
36 sseq2 3627 . . . . . . . . . . 11  |-  ( x  =  T  ->  ( { ( X  \ 
y ) ,  ( K `  y ) }  C_  x  <->  { ( X  \  y ) ,  ( K `  y
) }  C_  T
) )
3736raleqbi1dv 3146 . . . . . . . . . 10  |-  ( x  =  T  ->  ( A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x  <->  A. y  e.  T  { ( X  \  y ) ,  ( K `  y
) }  C_  T
) )
3835, 37anbi12d 747 . . . . . . . . 9  |-  ( x  =  T  ->  (
( A  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x )  <->  ( A  e.  T  /\  A. y  e.  T  {
( X  \  y
) ,  ( K `
 y ) } 
C_  T ) ) )
39 eleq2 2690 . . . . . . . . 9  |-  ( x  =  T  ->  (
s  e.  x  <->  s  e.  T ) )
4038, 39imbi12d 334 . . . . . . . 8  |-  ( x  =  T  ->  (
( ( A  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
)  ->  s  e.  x )  <->  ( ( A  e.  T  /\  A. y  e.  T  {
( X  \  y
) ,  ( K `
 y ) } 
C_  T )  -> 
s  e.  T ) ) )
4140rspccv 3306 . . . . . . 7  |-  ( A. x  e.  ~P  ~P X
( ( A  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
)  ->  s  e.  x )  ->  ( T  e.  ~P ~P X  ->  ( ( A  e.  T  /\  A. y  e.  T  {
( X  \  y
) ,  ( K `
 y ) } 
C_  T )  -> 
s  e.  T ) ) )
4234, 41mpi 20 . . . . . 6  |-  ( A. x  e.  ~P  ~P X
( ( A  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
)  ->  s  e.  x )  ->  (
( A  e.  T  /\  A. y  e.  T  { ( X  \ 
y ) ,  ( K `  y ) }  C_  T )  ->  s  e.  T ) )
4319, 27, 42mp2ani 714 . . . . 5  |-  ( A. x  e.  ~P  ~P X
( ( A  e.  x  /\  A. y  e.  x  { ( X  \  y ) ,  ( K `  y
) }  C_  x
)  ->  s  e.  x )  ->  s  e.  T )
443, 43sylbi 207 . . . 4  |-  ( s  e.  |^| { x  e. 
~P ~P X  | 
( A  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) }  ->  s  e.  T
)
4544ssriv 3607 . . 3  |-  |^| { x  e.  ~P ~P X  | 
( A  e.  x  /\  A. y  e.  x  { ( X  \ 
y ) ,  ( K `  y ) }  C_  x ) }  C_  T
461, 45eqsstri 3635 . 2  |-  S  C_  T
4711, 12, 20, 21, 16, 22, 23, 24, 7kur14lem8 31195 . 2  |-  ( T  e.  Fin  /\  ( # `
 T )  <_ ; 1 4 )
48 1nn0 11308 . . 3  |-  1  e.  NN0
49 4nn0 11311 . . 3  |-  4  e.  NN0
5048, 49deccl 11512 . 2  |- ; 1 4  e.  NN0
5146, 47, 50hashsslei 13213 1  |-  ( S  e.  Fin  /\  ( # `
 S )  <_ ; 1 4 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    \ cdif 3571    u. cun 3572    C_ wss 3574   ~Pcpw 4158   {cpr 4179   {ctp 4181   U.cuni 4436   |^|cint 4475   class class class wbr 4653   ` cfv 5888   Fincfn 7955   1c1 9937    <_ cle 10075   4c4 11072  ;cdc 11493   #chash 13117   Topctop 20698   intcnt 20821   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-hash 13118  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by:  kur14lem10  31197
  Copyright terms: Public domain W3C validator