| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rtrclex | Structured version Visualization version Unicode version | ||
| Description: The reflexive-transitive closure of a set exists. (Contributed by RP, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| rtrclex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3776 |
. . . 4
| |
| 2 | coundir 5637 |
. . . . . . 7
| |
| 3 | coundi 5636 |
. . . . . . . . 9
| |
| 4 | cossxp 5658 |
. . . . . . . . . . 11
| |
| 5 | ssun1 3776 |
. . . . . . . . . . . 12
| |
| 6 | ssun2 3777 |
. . . . . . . . . . . 12
| |
| 7 | xpss12 5225 |
. . . . . . . . . . . 12
| |
| 8 | 5, 6, 7 | mp2an 708 |
. . . . . . . . . . 11
|
| 9 | 4, 8 | sstri 3612 |
. . . . . . . . . 10
|
| 10 | cossxp 5658 |
. . . . . . . . . . 11
| |
| 11 | dmxpss 5565 |
. . . . . . . . . . . 12
| |
| 12 | xpss12 5225 |
. . . . . . . . . . . 12
| |
| 13 | 11, 6, 12 | mp2an 708 |
. . . . . . . . . . 11
|
| 14 | 10, 13 | sstri 3612 |
. . . . . . . . . 10
|
| 15 | 9, 14 | unssi 3788 |
. . . . . . . . 9
|
| 16 | 3, 15 | eqsstri 3635 |
. . . . . . . 8
|
| 17 | coundi 5636 |
. . . . . . . . 9
| |
| 18 | cossxp 5658 |
. . . . . . . . . . 11
| |
| 19 | rnxpss 5566 |
. . . . . . . . . . . 12
| |
| 20 | xpss12 5225 |
. . . . . . . . . . . 12
| |
| 21 | 5, 19, 20 | mp2an 708 |
. . . . . . . . . . 11
|
| 22 | 18, 21 | sstri 3612 |
. . . . . . . . . 10
|
| 23 | xpidtr 5518 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | unssi 3788 |
. . . . . . . . 9
|
| 25 | 17, 24 | eqsstri 3635 |
. . . . . . . 8
|
| 26 | 16, 25 | unssi 3788 |
. . . . . . 7
|
| 27 | 2, 26 | eqsstri 3635 |
. . . . . 6
|
| 28 | ssun2 3777 |
. . . . . 6
| |
| 29 | 27, 28 | sstri 3612 |
. . . . 5
|
| 30 | dmun 5331 |
. . . . . . . . . . 11
| |
| 31 | dmxpid 5345 |
. . . . . . . . . . . . 13
| |
| 32 | 31 | uneq2i 3764 |
. . . . . . . . . . . 12
|
| 33 | ssequn1 3783 |
. . . . . . . . . . . . 13
| |
| 34 | 5, 33 | mpbi 220 |
. . . . . . . . . . . 12
|
| 35 | 32, 34 | eqtri 2644 |
. . . . . . . . . . 11
|
| 36 | 30, 35 | eqtri 2644 |
. . . . . . . . . 10
|
| 37 | rnun 5541 |
. . . . . . . . . . 11
| |
| 38 | rnxpid 5567 |
. . . . . . . . . . . . 13
| |
| 39 | 38 | uneq2i 3764 |
. . . . . . . . . . . 12
|
| 40 | ssequn1 3783 |
. . . . . . . . . . . . 13
| |
| 41 | 6, 40 | mpbi 220 |
. . . . . . . . . . . 12
|
| 42 | 39, 41 | eqtri 2644 |
. . . . . . . . . . 11
|
| 43 | 37, 42 | eqtri 2644 |
. . . . . . . . . 10
|
| 44 | 36, 43 | uneq12i 3765 |
. . . . . . . . 9
|
| 45 | unidm 3756 |
. . . . . . . . 9
| |
| 46 | 44, 45 | eqtri 2644 |
. . . . . . . 8
|
| 47 | 46 | reseq2i 5393 |
. . . . . . 7
|
| 48 | fnresi 6008 |
. . . . . . . . 9
| |
| 49 | fnrel 5989 |
. . . . . . . . 9
| |
| 50 | relssdmrn 5656 |
. . . . . . . . 9
| |
| 51 | 48, 49, 50 | mp2b 10 |
. . . . . . . 8
|
| 52 | dmresi 5457 |
. . . . . . . . 9
| |
| 53 | rnresi 5479 |
. . . . . . . . 9
| |
| 54 | 52, 53 | xpeq12i 5137 |
. . . . . . . 8
|
| 55 | 51, 54 | sseqtri 3637 |
. . . . . . 7
|
| 56 | 47, 55 | eqsstri 3635 |
. . . . . 6
|
| 57 | 56, 28 | sstri 3612 |
. . . . 5
|
| 58 | 29, 57 | pm3.2i 471 |
. . . 4
|
| 59 | rtrclexlem 37923 |
. . . . 5
| |
| 60 | id 22 |
. . . . . . . . . . 11
| |
| 61 | 60, 60 | coeq12d 5286 |
. . . . . . . . . 10
|
| 62 | 61, 60 | sseq12d 3634 |
. . . . . . . . 9
|
| 63 | dmeq 5324 |
. . . . . . . . . . . 12
| |
| 64 | rneq 5351 |
. . . . . . . . . . . 12
| |
| 65 | 63, 64 | uneq12d 3768 |
. . . . . . . . . . 11
|
| 66 | 65 | reseq2d 5396 |
. . . . . . . . . 10
|
| 67 | 66, 60 | sseq12d 3634 |
. . . . . . . . 9
|
| 68 | 62, 67 | anbi12d 747 |
. . . . . . . 8
|
| 69 | 68 | cleq2lem 37914 |
. . . . . . 7
|
| 70 | 69 | biimprd 238 |
. . . . . 6
|
| 71 | 70 | adantl 482 |
. . . . 5
|
| 72 | 59, 71 | spcimedv 3292 |
. . . 4
|
| 73 | 1, 58, 72 | mp2ani 714 |
. . 3
|
| 74 | exsimpl 1795 |
. . . 4
| |
| 75 | vex 3203 |
. . . . . 6
| |
| 76 | 75 | ssex 4802 |
. . . . 5
|
| 77 | 76 | exlimiv 1858 |
. . . 4
|
| 78 | 74, 77 | syl 17 |
. . 3
|
| 79 | 73, 78 | impbii 199 |
. 2
|
| 80 | intexab 4822 |
. 2
| |
| 81 | 79, 80 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-fn 5891 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |