| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cflem | Structured version Visualization version Unicode version | ||
| Description: A lemma used to simplify
cofinality computations, showing the existence
of the cardinal of an unbounded subset of a set |
| Ref | Expression |
|---|---|
| cflem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3624 |
. . 3
| |
| 2 | ssid 3624 |
. . . . 5
| |
| 3 | sseq2 3627 |
. . . . . 6
| |
| 4 | 3 | rspcev 3309 |
. . . . 5
|
| 5 | 2, 4 | mpan2 707 |
. . . 4
|
| 6 | 5 | rgen 2922 |
. . 3
|
| 7 | sseq1 3626 |
. . . . 5
| |
| 8 | rexeq 3139 |
. . . . . 6
| |
| 9 | 8 | ralbidv 2986 |
. . . . 5
|
| 10 | 7, 9 | anbi12d 747 |
. . . 4
|
| 11 | 10 | spcegv 3294 |
. . 3
|
| 12 | 1, 6, 11 | mp2ani 714 |
. 2
|
| 13 | fvex 6201 |
. . . . . 6
| |
| 14 | 13 | isseti 3209 |
. . . . 5
|
| 15 | 19.41v 1914 |
. . . . 5
| |
| 16 | 14, 15 | mpbiran 953 |
. . . 4
|
| 17 | 16 | exbii 1774 |
. . 3
|
| 18 | excom 2042 |
. . 3
| |
| 19 | 17, 18 | bitr3i 266 |
. 2
|
| 20 | 12, 19 | sylib 208 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: cfval 9069 cff 9070 cff1 9080 |
| Copyright terms: Public domain | W3C validator |