MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflem Structured version   Visualization version   Unicode version

Theorem cflem 9068
Description: A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set  A. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
cflem  |-  ( A  e.  V  ->  E. x E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) )
Distinct variable group:    x, y, z, w, A
Allowed substitution hints:    V( x, y, z, w)

Proof of Theorem cflem
StepHypRef Expression
1 ssid 3624 . . 3  |-  A  C_  A
2 ssid 3624 . . . . 5  |-  z  C_  z
3 sseq2 3627 . . . . . 6  |-  ( w  =  z  ->  (
z  C_  w  <->  z  C_  z ) )
43rspcev 3309 . . . . 5  |-  ( ( z  e.  A  /\  z  C_  z )  ->  E. w  e.  A  z  C_  w )
52, 4mpan2 707 . . . 4  |-  ( z  e.  A  ->  E. w  e.  A  z  C_  w )
65rgen 2922 . . 3  |-  A. z  e.  A  E. w  e.  A  z  C_  w
7 sseq1 3626 . . . . 5  |-  ( y  =  A  ->  (
y  C_  A  <->  A  C_  A
) )
8 rexeq 3139 . . . . . 6  |-  ( y  =  A  ->  ( E. w  e.  y 
z  C_  w  <->  E. w  e.  A  z  C_  w ) )
98ralbidv 2986 . . . . 5  |-  ( y  =  A  ->  ( A. z  e.  A  E. w  e.  y 
z  C_  w  <->  A. z  e.  A  E. w  e.  A  z  C_  w ) )
107, 9anbi12d 747 . . . 4  |-  ( y  =  A  ->  (
( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )  <->  ( A  C_  A  /\  A. z  e.  A  E. w  e.  A  z  C_  w ) ) )
1110spcegv 3294 . . 3  |-  ( A  e.  V  ->  (
( A  C_  A  /\  A. z  e.  A  E. w  e.  A  z  C_  w )  ->  E. y ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w
) ) )
121, 6, 11mp2ani 714 . 2  |-  ( A  e.  V  ->  E. y
( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
)
13 fvex 6201 . . . . . 6  |-  ( card `  y )  e.  _V
1413isseti 3209 . . . . 5  |-  E. x  x  =  ( card `  y )
15 19.41v 1914 . . . . 5  |-  ( E. x ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  <->  ( E. x  x  =  ( card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) )
1614, 15mpbiran 953 . . . 4  |-  ( E. x ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  <->  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )
1716exbii 1774 . . 3  |-  ( E. y E. x ( x  =  ( card `  y )  /\  (
y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  <->  E. y
( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
)
18 excom 2042 . . 3  |-  ( E. y E. x ( x  =  ( card `  y )  /\  (
y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  <->  E. x E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) )
1917, 18bitr3i 266 . 2  |-  ( E. y ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w
)  <->  E. x E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) )
2012, 19sylib 208 1  |-  ( A  e.  V  ->  E. x E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ` cfv 5888   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896
This theorem is referenced by:  cfval  9069  cff  9070  cff1  9080
  Copyright terms: Public domain W3C validator