| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsrpr | Structured version Visualization version Unicode version | ||
| Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addsrpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5148 |
. . . 4
| |
| 2 | enrex 9888 |
. . . . 5
| |
| 3 | 2 | ecelqsi 7803 |
. . . 4
|
| 4 | 1, 3 | syl 17 |
. . 3
|
| 5 | opelxpi 5148 |
. . . 4
| |
| 6 | 2 | ecelqsi 7803 |
. . . 4
|
| 7 | 5, 6 | syl 17 |
. . 3
|
| 8 | 4, 7 | anim12i 590 |
. 2
|
| 9 | eqid 2622 |
. . . 4
| |
| 10 | eqid 2622 |
. . . 4
| |
| 11 | 9, 10 | pm3.2i 471 |
. . 3
|
| 12 | eqid 2622 |
. . 3
| |
| 13 | opeq12 4404 |
. . . . . . . . 9
| |
| 14 | 13 | eceq1d 7783 |
. . . . . . . 8
|
| 15 | 14 | eqeq2d 2632 |
. . . . . . 7
|
| 16 | 15 | anbi1d 741 |
. . . . . 6
|
| 17 | simpl 473 |
. . . . . . . . . 10
| |
| 18 | 17 | oveq1d 6665 |
. . . . . . . . 9
|
| 19 | simpr 477 |
. . . . . . . . . 10
| |
| 20 | 19 | oveq1d 6665 |
. . . . . . . . 9
|
| 21 | 18, 20 | opeq12d 4410 |
. . . . . . . 8
|
| 22 | 21 | eceq1d 7783 |
. . . . . . 7
|
| 23 | 22 | eqeq2d 2632 |
. . . . . 6
|
| 24 | 16, 23 | anbi12d 747 |
. . . . 5
|
| 25 | 24 | spc2egv 3295 |
. . . 4
|
| 26 | opeq12 4404 |
. . . . . . . . . 10
| |
| 27 | 26 | eceq1d 7783 |
. . . . . . . . 9
|
| 28 | 27 | eqeq2d 2632 |
. . . . . . . 8
|
| 29 | 28 | anbi2d 740 |
. . . . . . 7
|
| 30 | simpl 473 |
. . . . . . . . . . 11
| |
| 31 | 30 | oveq2d 6666 |
. . . . . . . . . 10
|
| 32 | simpr 477 |
. . . . . . . . . . 11
| |
| 33 | 32 | oveq2d 6666 |
. . . . . . . . . 10
|
| 34 | 31, 33 | opeq12d 4410 |
. . . . . . . . 9
|
| 35 | 34 | eceq1d 7783 |
. . . . . . . 8
|
| 36 | 35 | eqeq2d 2632 |
. . . . . . 7
|
| 37 | 29, 36 | anbi12d 747 |
. . . . . 6
|
| 38 | 37 | spc2egv 3295 |
. . . . 5
|
| 39 | 38 | 2eximdv 1848 |
. . . 4
|
| 40 | 25, 39 | sylan9 689 |
. . 3
|
| 41 | 11, 12, 40 | mp2ani 714 |
. 2
|
| 42 | ecexg 7746 |
. . . 4
| |
| 43 | 2, 42 | ax-mp 5 |
. . 3
|
| 44 | simp1 1061 |
. . . . . . . 8
| |
| 45 | 44 | eqeq1d 2624 |
. . . . . . 7
|
| 46 | simp2 1062 |
. . . . . . . 8
| |
| 47 | 46 | eqeq1d 2624 |
. . . . . . 7
|
| 48 | 45, 47 | anbi12d 747 |
. . . . . 6
|
| 49 | simp3 1063 |
. . . . . . 7
| |
| 50 | 49 | eqeq1d 2624 |
. . . . . 6
|
| 51 | 48, 50 | anbi12d 747 |
. . . . 5
|
| 52 | 51 | 4exbidv 1854 |
. . . 4
|
| 53 | addsrmo 9894 |
. . . 4
| |
| 54 | df-plr 9879 |
. . . . 5
| |
| 55 | df-nr 9878 |
. . . . . . . . 9
| |
| 56 | 55 | eleq2i 2693 |
. . . . . . . 8
|
| 57 | 55 | eleq2i 2693 |
. . . . . . . 8
|
| 58 | 56, 57 | anbi12i 733 |
. . . . . . 7
|
| 59 | 58 | anbi1i 731 |
. . . . . 6
|
| 60 | 59 | oprabbii 6710 |
. . . . 5
|
| 61 | 54, 60 | eqtri 2644 |
. . . 4
|
| 62 | 52, 53, 61 | ovig 6782 |
. . 3
|
| 63 | 43, 62 | mp3an3 1413 |
. 2
|
| 64 | 8, 41, 63 | sylc 65 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ec 7744 df-qs 7748 df-ni 9694 df-pli 9695 df-mi 9696 df-lti 9697 df-plpq 9730 df-mpq 9731 df-ltpq 9732 df-enq 9733 df-nq 9734 df-erq 9735 df-plq 9736 df-mq 9737 df-1nq 9738 df-rq 9739 df-ltnq 9740 df-np 9803 df-plp 9805 df-ltp 9807 df-enr 9877 df-nr 9878 df-plr 9879 |
| This theorem is referenced by: addclsr 9904 addcomsr 9908 addasssr 9909 distrsr 9912 m1p1sr 9913 0idsr 9918 ltasr 9921 |
| Copyright terms: Public domain | W3C validator |