| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbidi | Structured version Visualization version Unicode version | ||
| Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.) |
| Ref | Expression |
|---|---|
| mpbidi.min |
|
| mpbidi.maj |
|
| Ref | Expression |
|---|---|
| mpbidi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbidi.min |
. 2
| |
| 2 | mpbidi.maj |
. . 3
| |
| 3 | 2 | biimpd 219 |
. 2
|
| 4 | 1, 3 | sylcom 30 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 |
| This theorem is referenced by: tpid3gOLD 4306 ralxfr2d 4882 ovmpt4g 6783 ov3 6797 omeulem2 7663 domtriomlem 9264 nsmallnq 9799 bposlem1 25009 pntrsumbnd 25255 mptsnunlem 33185 poimirlem27 33436 frege92 38249 nzss 38516 |
| Copyright terms: Public domain | W3C validator |