Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzss Structured version   Visualization version   Unicode version

Theorem nzss 38516
Description: The set of multiples of m, mℤ, is a subset of those of n, nℤ, iff n divides m. Lemma 2.1(a) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzss.m  |-  ( ph  ->  M  e.  ZZ )
nzss.n  |-  ( ph  ->  N  e.  V )
Assertion
Ref Expression
nzss  |-  ( ph  ->  ( (  ||  " { M } )  C_  (  ||  " { N }
)  <->  N  ||  M ) )

Proof of Theorem nzss
Dummy variables  x  y  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nzss.m . 2  |-  ( ph  ->  M  e.  ZZ )
2 nzss.n . 2  |-  ( ph  ->  N  e.  V )
3 iddvds 14995 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  ||  M )
4 breq2 4657 . . . . . . . . . 10  |-  ( x  =  M  ->  ( M  ||  x  <->  M  ||  M
) )
54elabg 3351 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  e.  { x  |  M  ||  x }  <->  M 
||  M ) )
63, 5mpbird 247 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  { x  |  M  ||  x } )
7 reldvds 38514 . . . . . . . . 9  |-  Rel  ||
8 relimasn 5488 . . . . . . . . 9  |-  ( Rel  ||  ->  (  ||  " { M } )  =  {
x  |  M  ||  x } )
97, 8ax-mp 5 . . . . . . . 8  |-  (  ||  " { M } )  =  { x  |  M  ||  x }
106, 9syl6eleqr 2712 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  (  ||  " { M } ) )
11 ssel 3597 . . . . . . 7  |-  ( ( 
||  " { M }
)  C_  (  ||  " { N } )  ->  ( M  e.  (  ||  " { M } )  ->  M  e.  (  ||  " { N } ) ) )
1210, 11syl5 34 . . . . . 6  |-  ( ( 
||  " { M }
)  C_  (  ||  " { N } )  ->  ( M  e.  ZZ  ->  M  e.  (  ||  " { N } ) ) )
13 breq2 4657 . . . . . . 7  |-  ( x  =  M  ->  ( N  ||  x  <->  N  ||  M
) )
14 relimasn 5488 . . . . . . . 8  |-  ( Rel  ||  ->  (  ||  " { N } )  =  {
x  |  N  ||  x } )
157, 14ax-mp 5 . . . . . . 7  |-  (  ||  " { N } )  =  { x  |  N  ||  x }
1613, 15elab2g 3353 . . . . . 6  |-  ( M  e.  ZZ  ->  ( M  e.  (  ||  " { N } )  <-> 
N  ||  M )
)
1712, 16mpbidi 231 . . . . 5  |-  ( ( 
||  " { M }
)  C_  (  ||  " { N } )  ->  ( M  e.  ZZ  ->  N  ||  M
) )
1817com12 32 . . . 4  |-  ( M  e.  ZZ  ->  (
(  ||  " { M } )  C_  (  ||  " { N }
)  ->  N  ||  M
) )
1918adantr 481 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  V )  ->  ( (  ||  " { M } )  C_  (  ||  " { N }
)  ->  N  ||  M
) )
20 ssid 3624 . . . . . . 7  |-  { 0 }  C_  { 0 }
21 simpl 473 . . . . . . . . . . . . 13  |-  ( ( N  ||  M  /\  N  =  0 )  ->  N  ||  M
)
22 breq1 4656 . . . . . . . . . . . . . 14  |-  ( N  =  0  ->  ( N  ||  M  <->  0  ||  M ) )
23 dvdszrcl 14988 . . . . . . . . . . . . . . . 16  |-  ( N 
||  M  ->  ( N  e.  ZZ  /\  M  e.  ZZ ) )
2423simprd 479 . . . . . . . . . . . . . . 15  |-  ( N 
||  M  ->  M  e.  ZZ )
25 0dvds 15002 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  (
0  ||  M  <->  M  = 
0 ) )
2624, 25syl 17 . . . . . . . . . . . . . 14  |-  ( N 
||  M  ->  (
0  ||  M  <->  M  = 
0 ) )
2722, 26sylan9bbr 737 . . . . . . . . . . . . 13  |-  ( ( N  ||  M  /\  N  =  0 )  ->  ( N  ||  M 
<->  M  =  0 ) )
2821, 27mpbid 222 . . . . . . . . . . . 12  |-  ( ( N  ||  M  /\  N  =  0 )  ->  M  =  0 )
2928breq1d 4663 . . . . . . . . . . 11  |-  ( ( N  ||  M  /\  N  =  0 )  ->  ( M  ||  x 
<->  0  ||  x ) )
30 0dvds 15002 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
0  ||  x  <->  x  = 
0 ) )
3129, 30sylan9bb 736 . . . . . . . . . 10  |-  ( ( ( N  ||  M  /\  N  =  0
)  /\  x  e.  ZZ )  ->  ( M 
||  x  <->  x  = 
0 ) )
3231rabbidva 3188 . . . . . . . . 9  |-  ( ( N  ||  M  /\  N  =  0 )  ->  { x  e.  ZZ  |  M  ||  x }  =  {
x  e.  ZZ  |  x  =  0 }
)
33 0z 11388 . . . . . . . . . 10  |-  0  e.  ZZ
34 rabsn 4256 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  { x  e.  ZZ  |  x  =  0 }  =  {
0 } )
3533, 34ax-mp 5 . . . . . . . . 9  |-  { x  e.  ZZ  |  x  =  0 }  =  {
0 }
3632, 35syl6eq 2672 . . . . . . . 8  |-  ( ( N  ||  M  /\  N  =  0 )  ->  { x  e.  ZZ  |  M  ||  x }  =  {
0 } )
37 breq1 4656 . . . . . . . . . . 11  |-  ( N  =  0  ->  ( N  ||  x  <->  0  ||  x ) )
3837rabbidv 3189 . . . . . . . . . 10  |-  ( N  =  0  ->  { x  e.  ZZ  |  N  ||  x }  =  {
x  e.  ZZ  | 
0  ||  x }
)
3930rabbiia 3185 . . . . . . . . . . 11  |-  { x  e.  ZZ  |  0  ||  x }  =  {
x  e.  ZZ  |  x  =  0 }
4039, 35eqtri 2644 . . . . . . . . . 10  |-  { x  e.  ZZ  |  0  ||  x }  =  {
0 }
4138, 40syl6eq 2672 . . . . . . . . 9  |-  ( N  =  0  ->  { x  e.  ZZ  |  N  ||  x }  =  {
0 } )
4241adantl 482 . . . . . . . 8  |-  ( ( N  ||  M  /\  N  =  0 )  ->  { x  e.  ZZ  |  N  ||  x }  =  {
0 } )
4336, 42sseq12d 3634 . . . . . . 7  |-  ( ( N  ||  M  /\  N  =  0 )  ->  ( { x  e.  ZZ  |  M  ||  x }  C_  { x  e.  ZZ  |  N  ||  x }  <->  { 0 }  C_  { 0 } ) )
4420, 43mpbiri 248 . . . . . 6  |-  ( ( N  ||  M  /\  N  =  0 )  ->  { x  e.  ZZ  |  M  ||  x }  C_  { x  e.  ZZ  |  N  ||  x } )
4524zcnd 11483 . . . . . . . . . . . 12  |-  ( N 
||  M  ->  M  e.  CC )
4645ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( N  ||  M  /\  N  =/=  0
)  /\  n  e.  ZZ )  ->  M  e.  CC )
4723simpld 475 . . . . . . . . . . . . 13  |-  ( N 
||  M  ->  N  e.  ZZ )
4847zcnd 11483 . . . . . . . . . . . 12  |-  ( N 
||  M  ->  N  e.  CC )
4948ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( N  ||  M  /\  N  =/=  0
)  /\  n  e.  ZZ )  ->  N  e.  CC )
50 simplr 792 . . . . . . . . . . 11  |-  ( ( ( N  ||  M  /\  N  =/=  0
)  /\  n  e.  ZZ )  ->  N  =/=  0 )
5146, 49, 50divcan2d 10803 . . . . . . . . . 10  |-  ( ( ( N  ||  M  /\  N  =/=  0
)  /\  n  e.  ZZ )  ->  ( N  x.  ( M  /  N ) )  =  M )
5251breq1d 4663 . . . . . . . . 9  |-  ( ( ( N  ||  M  /\  N  =/=  0
)  /\  n  e.  ZZ )  ->  ( ( N  x.  ( M  /  N ) ) 
||  n  <->  M  ||  n
) )
5347adantr 481 . . . . . . . . . . 11  |-  ( ( N  ||  M  /\  N  =/=  0 )  ->  N  e.  ZZ )
54 dvdsval2 14986 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  M  e.  ZZ )  ->  ( N  ||  M  <->  ( M  /  N )  e.  ZZ ) )
5554biimpd 219 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  M  e.  ZZ )  ->  ( N  ||  M  ->  ( M  /  N )  e.  ZZ ) )
56553com23 1271 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  N  =/=  0 )  ->  ( N  ||  M  ->  ( M  /  N )  e.  ZZ ) )
57563expa 1265 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ )  /\  N  =/=  0
)  ->  ( N  ||  M  ->  ( M  /  N )  e.  ZZ ) )
5823, 57sylan 488 . . . . . . . . . . . . 13  |-  ( ( N  ||  M  /\  N  =/=  0 )  -> 
( N  ||  M  ->  ( M  /  N
)  e.  ZZ ) )
5958imp 445 . . . . . . . . . . . 12  |-  ( ( ( N  ||  M  /\  N  =/=  0
)  /\  N  ||  M
)  ->  ( M  /  N )  e.  ZZ )
6059anabss1 855 . . . . . . . . . . 11  |-  ( ( N  ||  M  /\  N  =/=  0 )  -> 
( M  /  N
)  e.  ZZ )
6153, 60jca 554 . . . . . . . . . 10  |-  ( ( N  ||  M  /\  N  =/=  0 )  -> 
( N  e.  ZZ  /\  ( M  /  N
)  e.  ZZ ) )
62 muldvds1 15006 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( M  /  N
)  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( N  x.  ( M  /  N
) )  ||  n  ->  N  ||  n ) )
63623expa 1265 . . . . . . . . . 10  |-  ( ( ( N  e.  ZZ  /\  ( M  /  N
)  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( N  x.  ( M  /  N ) )  ||  n  ->  N  ||  n
) )
6461, 63sylan 488 . . . . . . . . 9  |-  ( ( ( N  ||  M  /\  N  =/=  0
)  /\  n  e.  ZZ )  ->  ( ( N  x.  ( M  /  N ) ) 
||  n  ->  N  ||  n ) )
6552, 64sylbird 250 . . . . . . . 8  |-  ( ( ( N  ||  M  /\  N  =/=  0
)  /\  n  e.  ZZ )  ->  ( M 
||  n  ->  N  ||  n ) )
6665ss2rabdv 3683 . . . . . . 7  |-  ( ( N  ||  M  /\  N  =/=  0 )  ->  { n  e.  ZZ  |  M  ||  n }  C_ 
{ n  e.  ZZ  |  N  ||  n }
)
67 breq2 4657 . . . . . . . 8  |-  ( n  =  x  ->  ( M  ||  n  <->  M  ||  x
) )
6867cbvrabv 3199 . . . . . . 7  |-  { n  e.  ZZ  |  M  ||  n }  =  {
x  e.  ZZ  |  M  ||  x }
69 breq2 4657 . . . . . . . 8  |-  ( n  =  x  ->  ( N  ||  n  <->  N  ||  x
) )
7069cbvrabv 3199 . . . . . . 7  |-  { n  e.  ZZ  |  N  ||  n }  =  {
x  e.  ZZ  |  N  ||  x }
7166, 68, 703sstr3g 3645 . . . . . 6  |-  ( ( N  ||  M  /\  N  =/=  0 )  ->  { x  e.  ZZ  |  M  ||  x }  C_ 
{ x  e.  ZZ  |  N  ||  x }
)
7244, 71pm2.61dane 2881 . . . . 5  |-  ( N 
||  M  ->  { x  e.  ZZ  |  M  ||  x }  C_  { x  e.  ZZ  |  N  ||  x } )
73 breq1 4656 . . . . . . . . . 10  |-  ( n  =  M  ->  (
n  ||  x  <->  M  ||  x
) )
7473rabbidv 3189 . . . . . . . . 9  |-  ( n  =  M  ->  { x  e.  ZZ  |  n  ||  x }  =  {
x  e.  ZZ  |  M  ||  x } )
7573abbidv 2741 . . . . . . . . 9  |-  ( n  =  M  ->  { x  |  n  ||  x }  =  { x  |  M  ||  x } )
7674, 75eqeq12d 2637 . . . . . . . 8  |-  ( n  =  M  ->  ( { x  e.  ZZ  |  n  ||  x }  =  { x  |  n 
||  x }  <->  { x  e.  ZZ  |  M  ||  x }  =  {
x  |  M  ||  x } ) )
77 simpr 477 . . . . . . . . . . 11  |-  ( ( y  e.  ZZ  /\  n  ||  y )  ->  n  ||  y )
78 dvdszrcl 14988 . . . . . . . . . . . . 13  |-  ( n 
||  y  ->  (
n  e.  ZZ  /\  y  e.  ZZ )
)
7978simprd 479 . . . . . . . . . . . 12  |-  ( n 
||  y  ->  y  e.  ZZ )
8079ancri 575 . . . . . . . . . . 11  |-  ( n 
||  y  ->  (
y  e.  ZZ  /\  n  ||  y ) )
8177, 80impbii 199 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  n  ||  y )  <->  n  ||  y
)
82 breq2 4657 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
n  ||  x  <->  n  ||  y
) )
8382elrab 3363 . . . . . . . . . 10  |-  ( y  e.  { x  e.  ZZ  |  n  ||  x }  <->  ( y  e.  ZZ  /\  n  ||  y ) )
84 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
8584, 82elab 3350 . . . . . . . . . 10  |-  ( y  e.  { x  |  n  ||  x }  <->  n 
||  y )
8681, 83, 853bitr4i 292 . . . . . . . . 9  |-  ( y  e.  { x  e.  ZZ  |  n  ||  x }  <->  y  e.  {
x  |  n  ||  x } )
8786eqriv 2619 . . . . . . . 8  |-  { x  e.  ZZ  |  n  ||  x }  =  {
x  |  n  ||  x }
8876, 87vtoclg 3266 . . . . . . 7  |-  ( M  e.  ZZ  ->  { x  e.  ZZ  |  M  ||  x }  =  {
x  |  M  ||  x } )
8988adantr 481 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  V )  ->  { x  e.  ZZ  |  M  ||  x }  =  { x  |  M  ||  x } )
90 breq1 4656 . . . . . . . . . 10  |-  ( n  =  N  ->  (
n  ||  x  <->  N  ||  x
) )
9190rabbidv 3189 . . . . . . . . 9  |-  ( n  =  N  ->  { x  e.  ZZ  |  n  ||  x }  =  {
x  e.  ZZ  |  N  ||  x } )
9290abbidv 2741 . . . . . . . . 9  |-  ( n  =  N  ->  { x  |  n  ||  x }  =  { x  |  N  ||  x } )
9391, 92eqeq12d 2637 . . . . . . . 8  |-  ( n  =  N  ->  ( { x  e.  ZZ  |  n  ||  x }  =  { x  |  n 
||  x }  <->  { x  e.  ZZ  |  N  ||  x }  =  {
x  |  N  ||  x } ) )
9493, 87vtoclg 3266 . . . . . . 7  |-  ( N  e.  V  ->  { x  e.  ZZ  |  N  ||  x }  =  {
x  |  N  ||  x } )
9594adantl 482 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  V )  ->  { x  e.  ZZ  |  N  ||  x }  =  { x  |  N  ||  x } )
9689, 95sseq12d 3634 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  V )  ->  ( { x  e.  ZZ  |  M  ||  x }  C_  { x  e.  ZZ  |  N  ||  x }  <->  { x  |  M  ||  x }  C_  { x  |  N  ||  x }
) )
9772, 96syl5ib 234 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  V )  ->  ( N  ||  M  ->  { x  |  M  ||  x }  C_  { x  |  N  ||  x }
) )
989, 15sseq12i 3631 . . . 4  |-  ( ( 
||  " { M }
)  C_  (  ||  " { N } )  <->  { x  |  M  ||  x }  C_  { x  |  N  ||  x }
)
9997, 98syl6ibr 242 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  V )  ->  ( N  ||  M  ->  (  ||  " { M } )  C_  (  ||  " { N }
) ) )
10019, 99impbid 202 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  V )  ->  ( (  ||  " { M } )  C_  (  ||  " { N }
)  <->  N  ||  M ) )
1011, 2, 100syl2anc 693 1  |-  ( ph  ->  ( (  ||  " { M } )  C_  (  ||  " { N }
)  <->  N  ||  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   {crab 2916    C_ wss 3574   {csn 4177   class class class wbr 4653   "cima 5117   Rel wrel 5119  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941    / cdiv 10684   ZZcz 11377    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-dvds 14984
This theorem is referenced by:  nzin  38517
  Copyright terms: Public domain W3C validator