MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem1 Structured version   Visualization version   Unicode version

Theorem bposlem1 25009
Description: An upper bound on the prime powers dividing a central binomial coefficient. (Contributed by Mario Carneiro, 9-Mar-2014.)
Assertion
Ref Expression
bposlem1  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ ( P  pCnt  ( ( 2  x.  N )  _C  N ) ) )  <_  ( 2  x.  N ) )

Proof of Theorem bposlem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 1 ... (
2  x.  N ) )  e.  Fin )
2 2nn 11185 . . . . . . . . . . 11  |-  2  e.  NN
3 nnmulcl 11043 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  x.  N
)  e.  NN )
42, 3mpan 706 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  NN )
54ad2antrr 762 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  N )  e.  NN )
6 prmnn 15388 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  NN )
76ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  P  e.  NN )
8 elfznn 12370 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( 2  x.  N
) )  ->  k  e.  NN )
98adantl 482 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  NN )
109nnnn0d 11351 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  NN0 )
117, 10nnexpcld 13030 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  e.  NN )
12 nnrp 11842 . . . . . . . . . 10  |-  ( ( 2  x.  N )  e.  NN  ->  (
2  x.  N )  e.  RR+ )
13 nnrp 11842 . . . . . . . . . 10  |-  ( ( P ^ k )  e.  NN  ->  ( P ^ k )  e.  RR+ )
14 rpdivcl 11856 . . . . . . . . . 10  |-  ( ( ( 2  x.  N
)  e.  RR+  /\  ( P ^ k )  e.  RR+ )  ->  ( ( 2  x.  N )  /  ( P ^
k ) )  e.  RR+ )
1512, 13, 14syl2an 494 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  e.  NN  /\  ( P ^ k )  e.  NN )  -> 
( ( 2  x.  N )  /  ( P ^ k ) )  e.  RR+ )
165, 11, 15syl2anc 693 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  / 
( P ^ k
) )  e.  RR+ )
1716rpred 11872 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  / 
( P ^ k
) )  e.  RR )
1817flcld 12599 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  e.  ZZ )
19 2z 11409 . . . . . . 7  |-  2  e.  ZZ
20 simpll 790 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  e.  NN )
21 nnrp 11842 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  RR+ )
22 rpdivcl 11856 . . . . . . . . . . 11  |-  ( ( N  e.  RR+  /\  ( P ^ k )  e.  RR+ )  ->  ( N  /  ( P ^
k ) )  e.  RR+ )
2321, 13, 22syl2an 494 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P ^ k )  e.  NN )  -> 
( N  /  ( P ^ k ) )  e.  RR+ )
2420, 11, 23syl2anc 693 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  e.  RR+ )
2524rpred 11872 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  e.  RR )
2625flcld 12599 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  ZZ )
27 zmulcl 11426 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  ( |_ `  ( N  /  ( P ^
k ) ) )  e.  ZZ )  -> 
( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) )  e.  ZZ )
2819, 26, 27sylancr 695 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) )  e.  ZZ )
2918, 28zsubcld 11487 . . . . 5  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  e.  ZZ )
3029zred 11482 . . . 4  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  e.  RR )
31 1re 10039 . . . . . 6  |-  1  e.  RR
32 0re 10040 . . . . . 6  |-  0  e.  RR
3331, 32keepel 4155 . . . . 5  |-  if ( k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  e.  RR
3433a1i 11 . . . 4  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  if ( k  e.  ( 1 ... ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  e.  RR )
3528zred 11482 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) )  e.  RR )
3617, 35resubcld 10458 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  e.  RR )
37 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
3837a1i 11 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  2  e.  RR )
3918zred 11482 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  e.  RR )
40 flle 12600 . . . . . . . . . . 11  |-  ( ( ( 2  x.  N
)  /  ( P ^ k ) )  e.  RR  ->  ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  <_ 
( ( 2  x.  N )  /  ( P ^ k ) ) )
4117, 40syl 17 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  <_  ( (
2  x.  N )  /  ( P ^
k ) ) )
4239, 17, 35, 41lesub1dd 10643 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  ( (
( 2  x.  N
)  /  ( P ^ k ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) ) )
43 resubcl 10345 . . . . . . . . . . . . 13  |-  ( ( ( N  /  ( P ^ k ) )  e.  RR  /\  1  e.  RR )  ->  (
( N  /  ( P ^ k ) )  -  1 )  e.  RR )
4425, 31, 43sylancl 694 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  - 
1 )  e.  RR )
45 remulcl 10021 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( ( N  / 
( P ^ k
) )  -  1 )  e.  RR )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  e.  RR )
4637, 44, 45sylancr 695 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  e.  RR )
47 flltp1 12601 . . . . . . . . . . . . . 14  |-  ( ( N  /  ( P ^ k ) )  e.  RR  ->  ( N  /  ( P ^
k ) )  < 
( ( |_ `  ( N  /  ( P ^ k ) ) )  +  1 ) )
4825, 47syl 17 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  <  (
( |_ `  ( N  /  ( P ^
k ) ) )  +  1 ) )
49 1red 10055 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  e.  RR )
5026zred 11482 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  RR )
5125, 49, 50ltsubaddd 10623 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( N  /  ( P ^ k ) )  -  1 )  < 
( |_ `  ( N  /  ( P ^
k ) ) )  <-> 
( N  /  ( P ^ k ) )  <  ( ( |_
`  ( N  / 
( P ^ k
) ) )  +  1 ) ) )
5248, 51mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  - 
1 )  <  ( |_ `  ( N  / 
( P ^ k
) ) ) )
53 2pos 11112 . . . . . . . . . . . . . . 15  |-  0  <  2
5437, 53pm3.2i 471 . . . . . . . . . . . . . 14  |-  ( 2  e.  RR  /\  0  <  2 )
55 ltmul2 10874 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  / 
( P ^ k
) )  -  1 )  e.  RR  /\  ( |_ `  ( N  /  ( P ^
k ) ) )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( N  /  ( P ^ k ) )  -  1 )  < 
( |_ `  ( N  /  ( P ^
k ) ) )  <-> 
( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) )  <  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) ) )
5654, 55mp3an3 1413 . . . . . . . . . . . . 13  |-  ( ( ( ( N  / 
( P ^ k
) )  -  1 )  e.  RR  /\  ( |_ `  ( N  /  ( P ^
k ) ) )  e.  RR )  -> 
( ( ( N  /  ( P ^
k ) )  - 
1 )  <  ( |_ `  ( N  / 
( P ^ k
) ) )  <->  ( 2  x.  ( ( N  /  ( P ^
k ) )  - 
1 ) )  < 
( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) ) )
5744, 50, 56syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( N  /  ( P ^ k ) )  -  1 )  < 
( |_ `  ( N  /  ( P ^
k ) ) )  <-> 
( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) )  <  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) ) )
5852, 57mpbid 222 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  <  (
2  x.  ( |_
`  ( N  / 
( P ^ k
) ) ) ) )
5946, 35, 17, 58ltsub2dd 10640 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  ( ( ( 2  x.  N
)  /  ( P ^ k ) )  -  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) ) ) )
60 2cnd 11093 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  2  e.  CC )
61 nncn 11028 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
6261ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  e.  CC )
6311nncnd 11036 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  e.  CC )
6411nnne0d 11065 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  =/=  0
)
6560, 62, 63, 64divassd 10836 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  / 
( P ^ k
) )  =  ( 2  x.  ( N  /  ( P ^
k ) ) ) )
6625recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  / 
( P ^ k
) )  e.  CC )
67 1cnd 10056 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  e.  CC )
6860, 66, 67subdid 10486 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  =  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( 2  x.  1 ) ) )
69 2t1e2 11176 . . . . . . . . . . . . . 14  |-  ( 2  x.  1 )  =  2
7069oveq2i 6661 . . . . . . . . . . . . 13  |-  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( 2  x.  1 ) )  =  ( ( 2  x.  ( N  /  ( P ^ k ) ) )  -  2 )
7168, 70syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( ( N  / 
( P ^ k
) )  -  1 ) )  =  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  2 ) )
7265, 71oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) ) )  =  ( ( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( ( 2  x.  ( N  / 
( P ^ k
) ) )  - 
2 ) ) )
73 remulcl 10021 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  RR  /\  ( N  /  ( P ^ k ) )  e.  RR )  -> 
( 2  x.  ( N  /  ( P ^
k ) ) )  e.  RR )
7437, 25, 73sylancr 695 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( N  /  ( P ^ k ) ) )  e.  RR )
7574recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  ( N  /  ( P ^ k ) ) )  e.  CC )
76 2cn 11091 . . . . . . . . . . . 12  |-  2  e.  CC
77 nncan 10310 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  ( N  /  ( P ^
k ) ) )  e.  CC  /\  2  e.  CC )  ->  (
( 2  x.  ( N  /  ( P ^
k ) ) )  -  ( ( 2  x.  ( N  / 
( P ^ k
) ) )  - 
2 ) )  =  2 )
7875, 76, 77sylancl 694 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  ( N  / 
( P ^ k
) ) )  -  ( ( 2  x.  ( N  /  ( P ^ k ) ) )  -  2 ) )  =  2 )
7972, 78eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  (
( N  /  ( P ^ k ) )  -  1 ) ) )  =  2 )
8059, 79breqtrd 4679 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  2 )
8130, 36, 38, 42, 80lelttrd 10195 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  2 )
82 df-2 11079 . . . . . . . 8  |-  2  =  ( 1  +  1 )
8381, 82syl6breq 4694 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  ( 1  +  1 ) )
84 1z 11407 . . . . . . . 8  |-  1  e.  ZZ
85 zleltp1 11428 . . . . . . . 8  |-  ( ( ( ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_ 
1  <->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <  ( 1  +  1 ) ) )
8629, 84, 85sylancl 694 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( |_ `  ( ( 2  x.  N )  /  ( P ^
k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^
k ) ) ) ) )  <_  1  <->  ( ( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  < 
( 1  +  1 ) ) )
8783, 86mpbird 247 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  1 )
88 iftrue 4092 . . . . . . 7  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  1 )
8988breq2d 4665 . . . . . 6  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  ( (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  <->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  1 ) )
9087, 89syl5ibrcom 237 . . . . 5  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) ) )
919nnge1d 11063 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  <_  k
)
9291biantrurd 529 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  <_ 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <-> 
( 1  <_  k  /\  k  <_  ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ) )
936adantl 482 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  NN )
9493nnred 11035 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  RR )
95 prmuz2 15408 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
9695adantl 482 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  ( ZZ>= ` 
2 ) )
97 eluz2b1 11759 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  ZZ  /\  1  < 
P ) )
9897simprbi 480 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
9996, 98syl 17 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <  P )
10094, 99jca 554 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  e.  RR  /\  1  <  P ) )
101100adantr 481 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P  e.  RR  /\  1  < 
P ) )
102 elfzelz 12342 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( 2  x.  N
) )  ->  k  e.  ZZ )
103102adantl 482 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  ZZ )
1044adantr 481 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  NN )
105104nnrpd 11870 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  RR+ )
106105adantr 481 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  N )  e.  RR+ )
107 efexple 25006 . . . . . . . . . . 11  |-  ( ( ( P  e.  RR  /\  1  <  P )  /\  k  e.  ZZ  /\  ( 2  x.  N
)  e.  RR+ )  ->  ( ( P ^
k )  <_  (
2  x.  N )  <-> 
k  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )
108101, 103, 106, 107syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( P ^ k )  <_ 
( 2  x.  N
)  <->  k  <_  ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) )
1099nnzd 11481 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  k  e.  ZZ )
11084a1i 11 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  1  e.  ZZ )
111104nnred 11035 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  RR )
112 1red 10055 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  e.  RR )
11337a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
2  e.  RR )
114 1lt2 11194 . . . . . . . . . . . . . . . . . 18  |-  1  <  2
115114a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <  2 )
116 nnre 11027 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  N  e.  RR )
117116adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  N  e.  RR )
118 0le2 11111 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <_  2
11937, 118pm3.2i 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  e.  RR  /\  0  <_  2 )
120119a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  e.  RR  /\  0  <_  2 ) )
121 nnge1 11046 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  1  <_  N )
122121adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <_  N )
123 lemul2a 10878 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1  e.  RR  /\  N  e.  RR  /\  ( 2  e.  RR  /\  0  <_  2 ) )  /\  1  <_  N )  ->  (
2  x.  1 )  <_  ( 2  x.  N ) )
124112, 117, 120, 122, 123syl31anc 1329 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  1 )  <_  ( 2  x.  N ) )
12569, 124syl5eqbrr 4689 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
2  <_  ( 2  x.  N ) )
126112, 113, 111, 115, 125ltletrd 10197 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
1  <  ( 2  x.  N ) )
127111, 126rplogcld 24375 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  (
2  x.  N ) )  e.  RR+ )
12894, 99rplogcld 24375 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  P
)  e.  RR+ )
129127, 128rpdivcld 11889 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR+ )
130129rpred 11872 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR )
131130flcld 12599 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  ZZ )
132131adantr 481 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  ZZ )
133 elfz 12332 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  1  e.  ZZ  /\  ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) )  e.  ZZ )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( 1  <_  k  /\  k  <_  ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
134109, 110, 132, 133syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( 1  <_  k  /\  k  <_  ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
13592, 108, 1343bitr4rd 301 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( P ^ k )  <_ 
( 2  x.  N
) ) )
136135notbid 308 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  -.  ( P ^ k )  <_ 
( 2  x.  N
) ) )
137111adantr 481 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( 2  x.  N )  e.  RR )
13811nnred 11035 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( P ^
k )  e.  RR )
139137, 138ltnled 10184 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  <->  -.  ( P ^ k )  <_ 
( 2  x.  N
) ) )
140136, 139bitr4d 271 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  <->  ( 2  x.  N )  < 
( P ^ k
) ) )
14116rpge0d 11876 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  0  <_  (
( 2  x.  N
)  /  ( P ^ k ) ) )
142141adantrr 753 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  0  <_  ( ( 2  x.  N
)  /  ( P ^ k ) ) )
14311nngt0d 11064 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  0  <  ( P ^ k ) )
144 ltdivmul 10898 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2  x.  N
)  e.  RR  /\  1  e.  RR  /\  (
( P ^ k
)  e.  RR  /\  0  <  ( P ^
k ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  <  1  <->  ( 2  x.  N )  <  (
( P ^ k
)  x.  1 ) ) )
145137, 49, 138, 143, 144syl112anc 1330 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  <  1  <->  ( 2  x.  N )  <  (
( P ^ k
)  x.  1 ) ) )
14663mulid1d 10057 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( P ^ k )  x.  1 )  =  ( P ^ k ) )
147146breq2d 4665 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( ( P ^
k )  x.  1 )  <->  ( 2  x.  N )  <  ( P ^ k ) ) )
148145, 147bitrd 268 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( ( 2  x.  N )  /  ( P ^
k ) )  <  1  <->  ( 2  x.  N )  <  ( P ^ k ) ) )
149148biimprd 238 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  ( (
2  x.  N )  /  ( P ^
k ) )  <  1 ) )
150149impr 649 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( (
2  x.  N )  /  ( P ^
k ) )  <  1 )
151 0p1e1 11132 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
152150, 151syl6breqr 4695 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( (
2  x.  N )  /  ( P ^
k ) )  < 
( 0  +  1 ) )
15317adantrr 753 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( (
2  x.  N )  /  ( P ^
k ) )  e.  RR )
154 0z 11388 . . . . . . . . . . . . 13  |-  0  e.  ZZ
155 flbi 12617 . . . . . . . . . . . . 13  |-  ( ( ( ( 2  x.  N )  /  ( P ^ k ) )  e.  RR  /\  0  e.  ZZ )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  =  0  <->  (
0  <_  ( (
2  x.  N )  /  ( P ^
k ) )  /\  ( ( 2  x.  N )  /  ( P ^ k ) )  <  ( 0  +  1 ) ) ) )
156153, 154, 155sylancl 694 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  =  0  <->  ( 0  <_ 
( ( 2  x.  N )  /  ( P ^ k ) )  /\  ( ( 2  x.  N )  / 
( P ^ k
) )  <  (
0  +  1 ) ) ) )
157142, 152, 156mpbir2and 957 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  =  0 )
15824rpge0d 11876 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  0  <_  ( N  /  ( P ^
k ) ) )
159158adantrr 753 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  0  <_  ( N  /  ( P ^ k ) ) )
160116, 21ltaddrp2d 11906 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  N  <  ( N  +  N
) )
161612timesd 11275 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  (
2  x.  N )  =  ( N  +  N ) )
162160, 161breqtrrd 4681 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  <  ( 2  x.  N
) )
163162ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  <  (
2  x.  N ) )
164116ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  N  e.  RR )
165 lttr 10114 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  RR  /\  ( 2  x.  N
)  e.  RR  /\  ( P ^ k )  e.  RR )  -> 
( ( N  < 
( 2  x.  N
)  /\  ( 2  x.  N )  < 
( P ^ k
) )  ->  N  <  ( P ^ k
) ) )
166164, 137, 138, 165syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  <  ( 2  x.  N )  /\  (
2  x.  N )  <  ( P ^
k ) )  ->  N  <  ( P ^
k ) ) )
167163, 166mpand 711 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  N  <  ( P ^ k ) ) )
168 ltdivmul 10898 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  RR  /\  1  e.  RR  /\  (
( P ^ k
)  e.  RR  /\  0  <  ( P ^
k ) ) )  ->  ( ( N  /  ( P ^
k ) )  <  1  <->  N  <  ( ( P ^ k )  x.  1 ) ) )
169164, 49, 138, 143, 168syl112anc 1330 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  <  1  <->  N  <  ( ( P ^ k )  x.  1 ) ) )
170146breq2d 4665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( N  < 
( ( P ^
k )  x.  1 )  <->  N  <  ( P ^ k ) ) )
171169, 170bitrd 268 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( N  /  ( P ^
k ) )  <  1  <->  N  <  ( P ^ k ) ) )
172167, 171sylibrd 249 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  ( N  /  ( P ^
k ) )  <  1 ) )
173172impr 649 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( N  /  ( P ^
k ) )  <  1 )
174173, 151syl6breqr 4695 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( N  /  ( P ^
k ) )  < 
( 0  +  1 ) )
17525adantrr 753 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( N  /  ( P ^
k ) )  e.  RR )
176 flbi 12617 . . . . . . . . . . . . . . 15  |-  ( ( ( N  /  ( P ^ k ) )  e.  RR  /\  0  e.  ZZ )  ->  (
( |_ `  ( N  /  ( P ^
k ) ) )  =  0  <->  ( 0  <_  ( N  / 
( P ^ k
) )  /\  ( N  /  ( P ^
k ) )  < 
( 0  +  1 ) ) ) )
177175, 154, 176sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( N  / 
( P ^ k
) ) )  =  0  <->  ( 0  <_ 
( N  /  ( P ^ k ) )  /\  ( N  / 
( P ^ k
) )  <  (
0  +  1 ) ) ) )
178159, 174, 177mpbir2and 957 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  =  0 )
179178oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) )  =  ( 2  x.  0 ) )
180 2t0e0 11183 . . . . . . . . . . . 12  |-  ( 2  x.  0 )  =  0
181179, 180syl6eq 2672 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) )  =  0 )
182157, 181oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  =  ( 0  -  0 ) )
183 0m0e0 11130 . . . . . . . . . 10  |-  ( 0  -  0 )  =  0
184182, 183syl6eq 2672 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  =  0 )
185 0le0 11110 . . . . . . . . 9  |-  0  <_  0
186184, 185syl6eqbr 4692 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  ( k  e.  ( 1 ... ( 2  x.  N ) )  /\  ( 2  x.  N )  <  ( P ^ k ) ) )  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  0 )
187186expr 643 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( 2  x.  N )  < 
( P ^ k
)  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  0 ) )
188140, 187sylbid 230 . . . . . 6  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_ 
0 ) )
189 iffalse 4095 . . . . . . . 8  |-  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  0 )
190189eqcomd 2628 . . . . . . 7  |-  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  0  =  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
191190breq2d 4665 . . . . . 6  |-  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  ->  ( (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_ 
0  <->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) ) )
192188, 191mpbidi 231 . . . . 5  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( -.  k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) ) )
19390, 192pm2.61d 170 . . . 4  |-  ( ( ( N  e.  NN  /\  P  e.  Prime )  /\  k  e.  (
1 ... ( 2  x.  N ) ) )  ->  ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  <_  if (
k  e.  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
1941, 30, 34, 193fsumle 14531 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) ( ( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  <_  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
195 pcbcctr 25001 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  =  sum_ k  e.  ( 1 ... (
2  x.  N ) ) ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) ) )
196131zred 11482 . . . . . . . 8  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  RR )
197 flle 12600 . . . . . . . . 9  |-  ( ( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR  ->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) )
198130, 197syl 17 . . . . . . . 8  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) )
199104nnnn0d 11351 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  NN0 )
20093, 199nnexpcld 13030 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ (
2  x.  N ) )  e.  NN )
201200nnred 11035 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ (
2  x.  N ) )  e.  RR )
202 bernneq3 12992 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
2  x.  N )  e.  NN0 )  -> 
( 2  x.  N
)  <  ( P ^ ( 2  x.  N ) ) )
20396, 199, 202syl2anc 693 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  <  ( P ^ ( 2  x.  N ) ) )
204111, 201, 203ltled 10185 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  <_  ( P ^ ( 2  x.  N ) ) )
205105reeflogd 24370 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( exp `  ( log `  ( 2  x.  N ) ) )  =  ( 2  x.  N ) )
20693nnrpd 11870 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  RR+ )
207104nnzd 11481 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  ZZ )
208 reexplog 24341 . . . . . . . . . . . . 13  |-  ( ( P  e.  RR+  /\  (
2  x.  N )  e.  ZZ )  -> 
( P ^ (
2  x.  N ) )  =  ( exp `  ( ( 2  x.  N )  x.  ( log `  P ) ) ) )
209206, 207, 208syl2anc 693 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ (
2  x.  N ) )  =  ( exp `  ( ( 2  x.  N )  x.  ( log `  P ) ) ) )
210209eqcomd 2628 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( exp `  (
( 2  x.  N
)  x.  ( log `  P ) ) )  =  ( P ^
( 2  x.  N
) ) )
211204, 205, 2103brtr4d 4685 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( exp `  ( log `  ( 2  x.  N ) ) )  <_  ( exp `  (
( 2  x.  N
)  x.  ( log `  P ) ) ) )
212105relogcld 24369 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  (
2  x.  N ) )  e.  RR )
213128rpred 11872 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  P
)  e.  RR )
214111, 213remulcld 10070 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( 2  x.  N )  x.  ( log `  P ) )  e.  RR )
215 efle 14848 . . . . . . . . . . 11  |-  ( ( ( log `  (
2  x.  N ) )  e.  RR  /\  ( ( 2  x.  N )  x.  ( log `  P ) )  e.  RR )  -> 
( ( log `  (
2  x.  N ) )  <_  ( (
2  x.  N )  x.  ( log `  P
) )  <->  ( exp `  ( log `  (
2  x.  N ) ) )  <_  ( exp `  ( ( 2  x.  N )  x.  ( log `  P
) ) ) ) )
216212, 214, 215syl2anc 693 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  <_  ( (
2  x.  N )  x.  ( log `  P
) )  <->  ( exp `  ( log `  (
2  x.  N ) ) )  <_  ( exp `  ( ( 2  x.  N )  x.  ( log `  P
) ) ) ) )
217211, 216mpbird 247 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( log `  (
2  x.  N ) )  <_  ( (
2  x.  N )  x.  ( log `  P
) ) )
218212, 111, 128ledivmul2d 11926 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) )  <_  ( 2  x.  N )  <->  ( log `  ( 2  x.  N
) )  <_  (
( 2  x.  N
)  x.  ( log `  P ) ) ) )
219217, 218mpbird 247 . . . . . . . 8  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  <_ 
( 2  x.  N
) )
220196, 130, 111, 198, 219letrd 10194 . . . . . . 7  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( 2  x.  N ) )
221 eluz 11701 . . . . . . . 8  |-  ( ( ( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  ZZ  /\  (
2  x.  N )  e.  ZZ )  -> 
( ( 2  x.  N )  e.  (
ZZ>= `  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  <->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( 2  x.  N ) ) )
222131, 207, 221syl2anc 693 . . . . . . 7  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( 2  x.  N )  e.  (
ZZ>= `  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  <->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  <_  ( 2  x.  N ) ) )
223220, 222mpbird 247 . . . . . 6  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 2  x.  N
)  e.  ( ZZ>= `  ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) ) ) )
224 fzss2 12381 . . . . . 6  |-  ( ( 2  x.  N )  e.  ( ZZ>= `  ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  ->  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )  C_  ( 1 ... ( 2  x.  N ) ) )
225223, 224syl 17 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  C_  (
1 ... ( 2  x.  N ) ) )
226 sumhash 15600 . . . . 5  |-  ( ( ( 1 ... (
2  x.  N ) )  e.  Fin  /\  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) )  C_  (
1 ... ( 2  x.  N ) ) )  ->  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  ( # `  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
2271, 225, 226syl2anc 693 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_
`  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 )  =  ( # `  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) ) )
228129rprege0d 11879 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) )  e.  RR  /\  0  <_  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )
229 flge0nn0 12621 . . . . 5  |-  ( ( ( ( log `  (
2  x.  N ) )  /  ( log `  P ) )  e.  RR  /\  0  <_ 
( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  ->  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  e.  NN0 )
230 hashfz1 13134 . . . . 5  |-  ( ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )  =  ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) ) )
231228, 229, 2303syl 18 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( # `  ( 1 ... ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )  =  ( |_ `  ( ( log `  ( 2  x.  N ) )  /  ( log `  P
) ) ) )
232227, 231eqtr2d 2657 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( |_ `  (
( log `  (
2  x.  N ) )  /  ( log `  P ) ) )  =  sum_ k  e.  ( 1 ... ( 2  x.  N ) ) if ( k  e.  ( 1 ... ( |_ `  ( ( log `  ( 2  x.  N
) )  /  ( log `  P ) ) ) ) ,  1 ,  0 ) )
233194, 195, 2323brtr4d 4685 . 2  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) )
234 simpr 477 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  ->  P  e.  Prime )
235 nnnn0 11299 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
236 fzctr 12451 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
237 bccl2 13110 . . . . . . 7  |-  ( N  e.  ( 0 ... ( 2  x.  N
) )  ->  (
( 2  x.  N
)  _C  N )  e.  NN )
238235, 236, 2373syl 18 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  _C  N )  e.  NN )
239238adantr 481 . . . . 5  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( 2  x.  N )  _C  N
)  e.  NN )
240234, 239pccld 15555 . . . 4  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  e.  NN0 )
241240nn0zd 11480 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  e.  ZZ )
242 efexple 25006 . . 3  |-  ( ( ( P  e.  RR  /\  1  <  P )  /\  ( P  pCnt  ( ( 2  x.  N
)  _C  N ) )  e.  ZZ  /\  ( 2  x.  N
)  e.  RR+ )  ->  ( ( P ^
( P  pCnt  (
( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N )  <-> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )
24394, 99, 241, 105, 242syl211anc 1332 . 2  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( ( P ^
( P  pCnt  (
( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N )  <-> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  <_  ( |_ `  ( ( log `  (
2  x.  N ) )  /  ( log `  P ) ) ) ) )
244233, 243mpbird 247 1  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P ^ ( P  pCnt  ( ( 2  x.  N )  _C  N ) ) )  <_  ( 2  x.  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   |_cfl 12591   ^cexp 12860    _C cbc 13089   #chash 13117   sum_csu 14416   expce 14792   Primecprime 15385    pCnt cpc 15541   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  bposlem5  25013  bposlem6  25014  chebbnd1lem1  25158
  Copyright terms: Public domain W3C validator