MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexd Structured version   Visualization version   Unicode version

Theorem mreexexd 16308
Description: Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if  F and  G are disjoint from  H,  ( F  u.  H ) is independent,  F is contained in the closure of  ( G  u.  H ), and either  F or  G is finite, then there is a subset  q of  G equinumerous to  F such that  ( q  u.  H ) is independent. This implies the case of Proposition 4.2.1 in [FaureFrolicher] p. 86 where either  ( A  \  B ) or  ( B  \  A ) is finite. The theorem is proven by induction using mreexexlem3d 16306 for the base case and mreexexlem4d 16307 for the induction step. (Contributed by David Moews, 1-May-2017.) Removed dependencies on ax-rep 4771 and ax-ac2 9285. (Revised by Brendan Leahy, 2-Jun-2021.)
Hypotheses
Ref Expression
mreexexlem2d.1  |-  ( ph  ->  A  e.  (Moore `  X ) )
mreexexlem2d.2  |-  N  =  (mrCls `  A )
mreexexlem2d.3  |-  I  =  (mrInd `  A )
mreexexlem2d.4  |-  ( ph  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
mreexexlem2d.5  |-  ( ph  ->  F  C_  ( X  \  H ) )
mreexexlem2d.6  |-  ( ph  ->  G  C_  ( X  \  H ) )
mreexexlem2d.7  |-  ( ph  ->  F  C_  ( N `  ( G  u.  H
) ) )
mreexexlem2d.8  |-  ( ph  ->  ( F  u.  H
)  e.  I )
mreexexd.9  |-  ( ph  ->  ( F  e.  Fin  \/  G  e.  Fin )
)
Assertion
Ref Expression
mreexexd  |-  ( ph  ->  E. q  e.  ~P  G ( F  ~~  q  /\  ( q  u.  H )  e.  I
) )
Distinct variable groups:    F, q    G, q    X, s, y, z    ph, s, y, z    I,
s, y, z    N, s, y, z    ph, q    I, q    H, q
Allowed substitution hints:    A( y, z, s, q)    F( y, z, s)    G( y, z, s)    H( y, z, s)    N( q)    X( q)

Proof of Theorem mreexexd
Dummy variables  f 
g  h  l  k  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mreexexlem2d.1 . . 3  |-  ( ph  ->  A  e.  (Moore `  X ) )
21elfvexd 6222 . 2  |-  ( ph  ->  X  e.  _V )
3 mreexexlem2d.5 . 2  |-  ( ph  ->  F  C_  ( X  \  H ) )
4 mreexexlem2d.6 . 2  |-  ( ph  ->  G  C_  ( X  \  H ) )
5 mreexexlem2d.7 . 2  |-  ( ph  ->  F  C_  ( N `  ( G  u.  H
) ) )
6 mreexexlem2d.8 . 2  |-  ( ph  ->  ( F  u.  H
)  e.  I )
7 exmid 431 . . 3  |-  ( F  e.  Fin  \/  -.  F  e.  Fin )
8 ficardid 8788 . . . . . . 7  |-  ( F  e.  Fin  ->  ( card `  F )  ~~  F )
98ensymd 8007 . . . . . 6  |-  ( F  e.  Fin  ->  F  ~~  ( card `  F
) )
10 iftrue 4092 . . . . . 6  |-  ( F  e.  Fin  ->  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) )  =  ( card `  F
) )
119, 10breqtrrd 4681 . . . . 5  |-  ( F  e.  Fin  ->  F  ~~  if ( F  e. 
Fin ,  ( card `  F ) ,  (
card `  G )
) )
1211a1i 11 . . . 4  |-  ( ph  ->  ( F  e.  Fin  ->  F  ~~  if ( F  e.  Fin , 
( card `  F ) ,  ( card `  G
) ) ) )
13 mreexexd.9 . . . . . . . 8  |-  ( ph  ->  ( F  e.  Fin  \/  G  e.  Fin )
)
1413orcanai 952 . . . . . . 7  |-  ( (
ph  /\  -.  F  e.  Fin )  ->  G  e.  Fin )
15 ficardid 8788 . . . . . . . 8  |-  ( G  e.  Fin  ->  ( card `  G )  ~~  G )
1615ensymd 8007 . . . . . . 7  |-  ( G  e.  Fin  ->  G  ~~  ( card `  G
) )
1714, 16syl 17 . . . . . 6  |-  ( (
ph  /\  -.  F  e.  Fin )  ->  G  ~~  ( card `  G
) )
18 iffalse 4095 . . . . . . 7  |-  ( -.  F  e.  Fin  ->  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) )  =  ( card `  G
) )
1918adantl 482 . . . . . 6  |-  ( (
ph  /\  -.  F  e.  Fin )  ->  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) )  =  ( card `  G
) )
2017, 19breqtrrd 4681 . . . . 5  |-  ( (
ph  /\  -.  F  e.  Fin )  ->  G  ~~  if ( F  e. 
Fin ,  ( card `  F ) ,  (
card `  G )
) )
2120ex 450 . . . 4  |-  ( ph  ->  ( -.  F  e. 
Fin  ->  G  ~~  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) ) ) )
2212, 21orim12d 883 . . 3  |-  ( ph  ->  ( ( F  e. 
Fin  \/  -.  F  e.  Fin )  ->  ( F  ~~  if ( F  e.  Fin ,  (
card `  F ) ,  ( card `  G
) )  \/  G  ~~  if ( F  e. 
Fin ,  ( card `  F ) ,  (
card `  G )
) ) ) )
237, 22mpi 20 . 2  |-  ( ph  ->  ( F  ~~  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) )  \/  G  ~~  if ( F  e.  Fin , 
( card `  F ) ,  ( card `  G
) ) ) )
24 ficardom 8787 . . . . 5  |-  ( F  e.  Fin  ->  ( card `  F )  e. 
om )
2524adantl 482 . . . 4  |-  ( (
ph  /\  F  e.  Fin )  ->  ( card `  F )  e.  om )
26 ficardom 8787 . . . . 5  |-  ( G  e.  Fin  ->  ( card `  G )  e. 
om )
2714, 26syl 17 . . . 4  |-  ( (
ph  /\  -.  F  e.  Fin )  ->  ( card `  G )  e. 
om )
2825, 27ifclda 4120 . . 3  |-  ( ph  ->  if ( F  e. 
Fin ,  ( card `  F ) ,  (
card `  G )
)  e.  om )
29 breq2 4657 . . . . . . . . . 10  |-  ( l  =  (/)  ->  ( f 
~~  l  <->  f  ~~  (/) ) )
30 breq2 4657 . . . . . . . . . 10  |-  ( l  =  (/)  ->  ( g 
~~  l  <->  g  ~~  (/) ) )
3129, 30orbi12d 746 . . . . . . . . 9  |-  ( l  =  (/)  ->  ( ( f  ~~  l  \/  g  ~~  l )  <-> 
( f  ~~  (/)  \/  g  ~~  (/) ) ) )
32313anbi1d 1403 . . . . . . . 8  |-  ( l  =  (/)  ->  ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  <-> 
( ( f  ~~  (/) 
\/  g  ~~  (/) )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) ) )
3332imbi1d 331 . . . . . . 7  |-  ( l  =  (/)  ->  ( ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) )  <-> 
( ( ( f 
~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h )  e.  I
)  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
34332ralbidv 2989 . . . . . 6  |-  ( l  =  (/)  ->  ( A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) )  <->  A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
3534albidv 1849 . . . . 5  |-  ( l  =  (/)  ->  ( A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
3635imbi2d 330 . . . 4  |-  ( l  =  (/)  ->  ( (
ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  <->  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) ) )
37 breq2 4657 . . . . . . . . . 10  |-  ( l  =  k  ->  (
f  ~~  l  <->  f  ~~  k ) )
38 breq2 4657 . . . . . . . . . 10  |-  ( l  =  k  ->  (
g  ~~  l  <->  g  ~~  k ) )
3937, 38orbi12d 746 . . . . . . . . 9  |-  ( l  =  k  ->  (
( f  ~~  l  \/  g  ~~  l )  <-> 
( f  ~~  k  \/  g  ~~  k ) ) )
40393anbi1d 1403 . . . . . . . 8  |-  ( l  =  k  ->  (
( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  <->  ( (
f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) ) )
4140imbi1d 331 . . . . . . 7  |-  ( l  =  k  ->  (
( ( ( f 
~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) )  <-> 
( ( ( f 
~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
42412ralbidv 2989 . . . . . 6  |-  ( l  =  k  ->  ( A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
4342albidv 1849 . . . . 5  |-  ( l  =  k  ->  ( A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
4443imbi2d 330 . . . 4  |-  ( l  =  k  ->  (
( ph  ->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  <->  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) ) )
45 breq2 4657 . . . . . . . . . 10  |-  ( l  =  suc  k  -> 
( f  ~~  l  <->  f 
~~  suc  k )
)
46 breq2 4657 . . . . . . . . . 10  |-  ( l  =  suc  k  -> 
( g  ~~  l  <->  g 
~~  suc  k )
)
4745, 46orbi12d 746 . . . . . . . . 9  |-  ( l  =  suc  k  -> 
( ( f  ~~  l  \/  g  ~~  l )  <->  ( f  ~~  suc  k  \/  g  ~~  suc  k ) ) )
48473anbi1d 1403 . . . . . . . 8  |-  ( l  =  suc  k  -> 
( ( ( f 
~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  <->  ( (
f  ~~  suc  k  \/  g  ~~  suc  k
)  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h )  e.  I
) ) )
4948imbi1d 331 . . . . . . 7  |-  ( l  =  suc  k  -> 
( ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  ( (
( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
50492ralbidv 2989 . . . . . 6  |-  ( l  =  suc  k  -> 
( A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
5150albidv 1849 . . . . 5  |-  ( l  =  suc  k  -> 
( A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) )  <->  A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
5251imbi2d 330 . . . 4  |-  ( l  =  suc  k  -> 
( ( ph  ->  A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  <->  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) ) )
53 breq2 4657 . . . . . . . . . 10  |-  ( l  =  if ( F  e.  Fin ,  (
card `  F ) ,  ( card `  G
) )  ->  (
f  ~~  l  <->  f  ~~  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) ) ) )
54 breq2 4657 . . . . . . . . . 10  |-  ( l  =  if ( F  e.  Fin ,  (
card `  F ) ,  ( card `  G
) )  ->  (
g  ~~  l  <->  g  ~~  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) ) ) )
5553, 54orbi12d 746 . . . . . . . . 9  |-  ( l  =  if ( F  e.  Fin ,  (
card `  F ) ,  ( card `  G
) )  ->  (
( f  ~~  l  \/  g  ~~  l )  <-> 
( f  ~~  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) )  \/  g  ~~  if ( F  e.  Fin , 
( card `  F ) ,  ( card `  G
) ) ) ) )
56553anbi1d 1403 . . . . . . . 8  |-  ( l  =  if ( F  e.  Fin ,  (
card `  F ) ,  ( card `  G
) )  ->  (
( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  <->  ( (
f  ~~  if ( F  e.  Fin ,  (
card `  F ) ,  ( card `  G
) )  \/  g  ~~  if ( F  e. 
Fin ,  ( card `  F ) ,  (
card `  G )
) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) ) )
5756imbi1d 331 . . . . . . 7  |-  ( l  =  if ( F  e.  Fin ,  (
card `  F ) ,  ( card `  G
) )  ->  (
( ( ( f 
~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) )  <-> 
( ( ( f 
~~  if ( F  e.  Fin ,  (
card `  F ) ,  ( card `  G
) )  \/  g  ~~  if ( F  e. 
Fin ,  ( card `  F ) ,  (
card `  G )
) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
58572ralbidv 2989 . . . . . 6  |-  ( l  =  if ( F  e.  Fin ,  (
card `  F ) ,  ( card `  G
) )  ->  ( A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) )  \/  g  ~~  if ( F  e.  Fin , 
( card `  F ) ,  ( card `  G
) ) )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
5958albidv 1849 . . . . 5  |-  ( l  =  if ( F  e.  Fin ,  (
card `  F ) ,  ( card `  G
) )  ->  ( A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) )  \/  g  ~~  if ( F  e.  Fin , 
( card `  F ) ,  ( card `  G
) ) )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
6059imbi2d 330 . . . 4  |-  ( l  =  if ( F  e.  Fin ,  (
card `  F ) ,  ( card `  G
) )  ->  (
( ph  ->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  <->  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) )  \/  g  ~~  if ( F  e.  Fin , 
( card `  F ) ,  ( card `  G
) ) )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) ) )
611ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  ->  A  e.  (Moore `  X
) )
62 mreexexlem2d.2 . . . . . . . 8  |-  N  =  (mrCls `  A )
63 mreexexlem2d.3 . . . . . . . 8  |-  I  =  (mrInd `  A )
64 mreexexlem2d.4 . . . . . . . . 9  |-  ( ph  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
6564ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
66 simplrl 800 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
f  e.  ~P ( X  \  h ) )
6766elpwid 4170 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
f  C_  ( X  \  h ) )
68 simplrr 801 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
g  e.  ~P ( X  \  h ) )
6968elpwid 4170 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
g  C_  ( X  \  h ) )
70 simpr2 1068 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
f  C_  ( N `  ( g  u.  h
) ) )
71 simpr3 1069 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
( f  u.  h
)  e.  I )
72 simpr1 1067 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
( f  ~~  (/)  \/  g  ~~  (/) ) )
73 en0 8019 . . . . . . . . . 10  |-  ( f 
~~  (/)  <->  f  =  (/) )
74 en0 8019 . . . . . . . . . 10  |-  ( g 
~~  (/)  <->  g  =  (/) )
7573, 74orbi12i 543 . . . . . . . . 9  |-  ( ( f  ~~  (/)  \/  g  ~~  (/) )  <->  ( f  =  (/)  \/  g  =  (/) ) )
7672, 75sylib 208 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
( f  =  (/)  \/  g  =  (/) ) )
7761, 62, 63, 65, 67, 69, 70, 71, 76mreexexlem3d 16306 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
7877ex 450 . . . . . 6  |-  ( (
ph  /\  ( f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  ->  ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
7978ralrimivva 2971 . . . . 5  |-  ( ph  ->  A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
8079alrimiv 1855 . . . 4  |-  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
81 nfv 1843 . . . . . . . . 9  |-  F/ h ph
82 nfv 1843 . . . . . . . . 9  |-  F/ h  k  e.  om
83 nfa1 2028 . . . . . . . . 9  |-  F/ h A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
8481, 82, 83nf3an 1831 . . . . . . . 8  |-  F/ h
( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
85 nfv 1843 . . . . . . . . . 10  |-  F/ f
ph
86 nfv 1843 . . . . . . . . . 10  |-  F/ f  k  e.  om
87 nfra1 2941 . . . . . . . . . . 11  |-  F/ f A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
8887nfal 2153 . . . . . . . . . 10  |-  F/ f A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
8985, 86, 88nf3an 1831 . . . . . . . . 9  |-  F/ f ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
90 nfv 1843 . . . . . . . . . . . . 13  |-  F/ g
ph
91 nfv 1843 . . . . . . . . . . . . 13  |-  F/ g  k  e.  om
92 nfra2 2946 . . . . . . . . . . . . . 14  |-  F/ g A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
9392nfal 2153 . . . . . . . . . . . . 13  |-  F/ g A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
9490, 91, 93nf3an 1831 . . . . . . . . . . . 12  |-  F/ g ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
95 nfv 1843 . . . . . . . . . . . 12  |-  F/ g  f  e.  ~P ( X  \  h )
9694, 95nfan 1828 . . . . . . . . . . 11  |-  F/ g ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  f  e.  ~P ( X  \  h ) )
9713ad2ant1 1082 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  om 
/\  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  ->  A  e.  (Moore `  X
) )
9897ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  A  e.  (Moore `  X ) )
99643ad2ant1 1082 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  om 
/\  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
10099ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
101 simplrl 800 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  f  e.  ~P ( X  \  h
) )
102101elpwid 4170 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  f  C_  ( X  \  h ) )
103 simplrr 801 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  g  e.  ~P ( X  \  h
) )
104103elpwid 4170 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  g  C_  ( X  \  h ) )
105 simpr2 1068 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  f  C_  ( N `  ( g  u.  h ) ) )
106 simpr3 1069 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  ( f  u.  h )  e.  I
)
107 simpll2 1101 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  k  e.  om )
108 simpll3 1102 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
109 simpr1 1067 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  ( f  ~~  suc  k  \/  g  ~~  suc  k ) )
11098, 62, 63, 100, 102, 104, 105, 106, 107, 108, 109mreexexlem4d 16307 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
111110ex 450 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  -> 
( ( ( f 
~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
112111expr 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  f  e.  ~P ( X  \  h ) )  ->  ( g  e. 
~P ( X  \  h )  ->  (
( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
11396, 112ralrimi 2957 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  f  e.  ~P ( X  \  h ) )  ->  A. g  e.  ~P  ( X  \  h
) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k
)  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h )  e.  I
)  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
114113ex 450 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  om 
/\  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  -> 
( f  e.  ~P ( X  \  h
)  ->  A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
11589, 114ralrimi 2957 . . . . . . . 8  |-  ( (
ph  /\  k  e.  om 
/\  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  ->  A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
11684, 115alrimi 2082 . . . . . . 7  |-  ( (
ph  /\  k  e.  om 
/\  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  ->  A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
1171163exp 1264 . . . . . 6  |-  ( ph  ->  ( k  e.  om  ->  ( A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) )  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) ) )
118117com12 32 . . . . 5  |-  ( k  e.  om  ->  ( ph  ->  ( A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  ->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) ) )
119118a2d 29 . . . 4  |-  ( k  e.  om  ->  (
( ph  ->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  -> 
( ph  ->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) ) )
12036, 44, 52, 60, 80, 119finds 7092 . . 3  |-  ( if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) )  e. 
om  ->  ( ph  ->  A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) )  \/  g  ~~  if ( F  e.  Fin , 
( card `  F ) ,  ( card `  G
) ) )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
12128, 120mpcom 38 . 2  |-  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  if ( F  e.  Fin ,  ( card `  F
) ,  ( card `  G ) )  \/  g  ~~  if ( F  e.  Fin , 
( card `  F ) ,  ( card `  G
) ) )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
1222, 3, 4, 5, 6, 23, 121mreexexlemd 16304 1  |-  ( ph  ->  E. q  e.  ~P  G ( F  ~~  q  /\  ( q  u.  H )  e.  I
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   class class class wbr 4653   suc csuc 5725   ` cfv 5888   omcom 7065    ~~ cen 7952   Fincfn 7955   cardccrd 8761  Moorecmre 16242  mrClscmrc 16243  mrIndcmri 16244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-mre 16246  df-mrc 16247  df-mri 16248
This theorem is referenced by:  mreexdomd  16310  lindsdom  33403  aacllem  42547
  Copyright terms: Public domain W3C validator