Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubffval Structured version   Visualization version   Unicode version

Theorem mrsubffval 31404
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c  |-  C  =  (mCN `  T )
mrsubffval.v  |-  V  =  (mVR `  T )
mrsubffval.r  |-  R  =  (mREx `  T )
mrsubffval.s  |-  S  =  (mRSubst `  T )
mrsubffval.g  |-  G  =  (freeMnd `  ( C  u.  V ) )
Assertion
Ref Expression
mrsubffval  |-  ( T  e.  W  ->  S  =  ( f  e.  ( R  ^pm  V
)  |->  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V )  |->  if ( v  e.  dom  f ,  ( f `  v ) ,  <" v "> )
)  o.  e ) ) ) ) )
Distinct variable groups:    e, f,
v, C    R, e,
f, v    e, G, f    T, e, f, v   
e, V, f, v
Allowed substitution hints:    S( v, e, f)    G( v)    W( v, e, f)

Proof of Theorem mrsubffval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.s . 2  |-  S  =  (mRSubst `  T )
2 elex 3212 . . 3  |-  ( T  e.  W  ->  T  e.  _V )
3 fveq2 6191 . . . . . . 7  |-  ( t  =  T  ->  (mREx `  t )  =  (mREx `  T ) )
4 mrsubffval.r . . . . . . 7  |-  R  =  (mREx `  T )
53, 4syl6eqr 2674 . . . . . 6  |-  ( t  =  T  ->  (mREx `  t )  =  R )
6 fveq2 6191 . . . . . . 7  |-  ( t  =  T  ->  (mVR `  t )  =  (mVR
`  T ) )
7 mrsubffval.v . . . . . . 7  |-  V  =  (mVR `  T )
86, 7syl6eqr 2674 . . . . . 6  |-  ( t  =  T  ->  (mVR `  t )  =  V )
95, 8oveq12d 6668 . . . . 5  |-  ( t  =  T  ->  (
(mREx `  t )  ^pm  (mVR `  t )
)  =  ( R 
^pm  V ) )
10 fveq2 6191 . . . . . . . . . . 11  |-  ( t  =  T  ->  (mCN `  t )  =  (mCN
`  T ) )
11 mrsubffval.c . . . . . . . . . . 11  |-  C  =  (mCN `  T )
1210, 11syl6eqr 2674 . . . . . . . . . 10  |-  ( t  =  T  ->  (mCN `  t )  =  C )
1312, 8uneq12d 3768 . . . . . . . . 9  |-  ( t  =  T  ->  (
(mCN `  t )  u.  (mVR `  t )
)  =  ( C  u.  V ) )
1413fveq2d 6195 . . . . . . . 8  |-  ( t  =  T  ->  (freeMnd `  ( (mCN `  t
)  u.  (mVR `  t ) ) )  =  (freeMnd `  ( C  u.  V )
) )
15 mrsubffval.g . . . . . . . 8  |-  G  =  (freeMnd `  ( C  u.  V ) )
1614, 15syl6eqr 2674 . . . . . . 7  |-  ( t  =  T  ->  (freeMnd `  ( (mCN `  t
)  u.  (mVR `  t ) ) )  =  G )
1713mpteq1d 4738 . . . . . . . 8  |-  ( t  =  T  ->  (
v  e.  ( (mCN
`  t )  u.  (mVR `  t )
)  |->  if ( v  e.  dom  f ,  ( f `  v
) ,  <" v "> ) )  =  ( v  e.  ( C  u.  V ) 
|->  if ( v  e. 
dom  f ,  ( f `  v ) ,  <" v "> ) ) )
1817coeq1d 5283 . . . . . . 7  |-  ( t  =  T  ->  (
( v  e.  ( (mCN `  t )  u.  (mVR `  t )
)  |->  if ( v  e.  dom  f ,  ( f `  v
) ,  <" v "> ) )  o.  e )  =  ( ( v  e.  ( C  u.  V ) 
|->  if ( v  e. 
dom  f ,  ( f `  v ) ,  <" v "> ) )  o.  e ) )
1916, 18oveq12d 6668 . . . . . 6  |-  ( t  =  T  ->  (
(freeMnd `  ( (mCN `  t )  u.  (mVR `  t ) ) ) 
gsumg  ( ( v  e.  ( (mCN `  t
)  u.  (mVR `  t ) )  |->  if ( v  e.  dom  f ,  ( f `  v ) ,  <" v "> )
)  o.  e ) )  =  ( G 
gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  dom  f ,  ( f `  v
) ,  <" v "> ) )  o.  e ) ) )
205, 19mpteq12dv 4733 . . . . 5  |-  ( t  =  T  ->  (
e  e.  (mREx `  t )  |->  ( (freeMnd `  ( (mCN `  t
)  u.  (mVR `  t ) ) ) 
gsumg  ( ( v  e.  ( (mCN `  t
)  u.  (mVR `  t ) )  |->  if ( v  e.  dom  f ,  ( f `  v ) ,  <" v "> )
)  o.  e ) ) )  =  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  dom  f ,  ( f `  v
) ,  <" v "> ) )  o.  e ) ) ) )
219, 20mpteq12dv 4733 . . . 4  |-  ( t  =  T  ->  (
f  e.  ( (mREx `  t )  ^pm  (mVR `  t ) )  |->  ( e  e.  (mREx `  t )  |->  ( (freeMnd `  ( (mCN `  t
)  u.  (mVR `  t ) ) ) 
gsumg  ( ( v  e.  ( (mCN `  t
)  u.  (mVR `  t ) )  |->  if ( v  e.  dom  f ,  ( f `  v ) ,  <" v "> )
)  o.  e ) ) ) )  =  ( f  e.  ( R  ^pm  V )  |->  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  dom  f ,  ( f `  v
) ,  <" v "> ) )  o.  e ) ) ) ) )
22 df-mrsub 31387 . . . 4  |- mRSubst  =  ( t  e.  _V  |->  ( f  e.  ( (mREx `  t )  ^pm  (mVR `  t ) )  |->  ( e  e.  (mREx `  t )  |->  ( (freeMnd `  ( (mCN `  t
)  u.  (mVR `  t ) ) ) 
gsumg  ( ( v  e.  ( (mCN `  t
)  u.  (mVR `  t ) )  |->  if ( v  e.  dom  f ,  ( f `  v ) ,  <" v "> )
)  o.  e ) ) ) ) )
23 ovex 6678 . . . . 5  |-  ( R 
^pm  V )  e. 
_V
2423mptex 6486 . . . 4  |-  ( f  e.  ( R  ^pm  V )  |->  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V )  |->  if ( v  e.  dom  f ,  ( f `  v ) ,  <" v "> )
)  o.  e ) ) ) )  e. 
_V
2521, 22, 24fvmpt 6282 . . 3  |-  ( T  e.  _V  ->  (mRSubst `  T )  =  ( f  e.  ( R 
^pm  V )  |->  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  dom  f ,  ( f `  v
) ,  <" v "> ) )  o.  e ) ) ) ) )
262, 25syl 17 . 2  |-  ( T  e.  W  ->  (mRSubst `  T )  =  ( f  e.  ( R 
^pm  V )  |->  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  dom  f ,  ( f `  v
) ,  <" v "> ) )  o.  e ) ) ) ) )
271, 26syl5eq 2668 1  |-  ( T  e.  W  ->  S  =  ( f  e.  ( R  ^pm  V
)  |->  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V )  |->  if ( v  e.  dom  f ,  ( f `  v ) ,  <" v "> )
)  o.  e ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   ifcif 4086    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   <"cs1 13294    gsumg cgsu 16101  freeMndcfrmd 17384  mCNcmcn 31357  mVRcmvar 31358  mRExcmrex 31363  mRSubstcmrsub 31367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-mrsub 31387
This theorem is referenced by:  mrsubfval  31405  mrsubff  31409
  Copyright terms: Public domain W3C validator