Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubfval Structured version   Visualization version   Unicode version

Theorem mrsubfval 31405
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c  |-  C  =  (mCN `  T )
mrsubffval.v  |-  V  =  (mVR `  T )
mrsubffval.r  |-  R  =  (mREx `  T )
mrsubffval.s  |-  S  =  (mRSubst `  T )
mrsubffval.g  |-  G  =  (freeMnd `  ( C  u.  V ) )
Assertion
Ref Expression
mrsubfval  |-  ( ( F : A --> R  /\  A  C_  V )  -> 
( S `  F
)  =  ( e  e.  R  |->  ( G 
gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> ) )  o.  e ) ) ) )
Distinct variable groups:    v, e, A    C, e, v    e, F, v    R, e, v   
e, G    T, e,
v    e, V, v
Allowed substitution hints:    S( v, e)    G( v)

Proof of Theorem mrsubfval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.c . . . . . 6  |-  C  =  (mCN `  T )
2 mrsubffval.v . . . . . 6  |-  V  =  (mVR `  T )
3 mrsubffval.r . . . . . 6  |-  R  =  (mREx `  T )
4 mrsubffval.s . . . . . 6  |-  S  =  (mRSubst `  T )
5 mrsubffval.g . . . . . 6  |-  G  =  (freeMnd `  ( C  u.  V ) )
61, 2, 3, 4, 5mrsubffval 31404 . . . . 5  |-  ( T  e.  _V  ->  S  =  ( f  e.  ( R  ^pm  V
)  |->  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V )  |->  if ( v  e.  dom  f ,  ( f `  v ) ,  <" v "> )
)  o.  e ) ) ) ) )
76adantr 481 . . . 4  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  S  =  ( f  e.  ( R 
^pm  V )  |->  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  dom  f ,  ( f `  v
) ,  <" v "> ) )  o.  e ) ) ) ) )
8 dmeq 5324 . . . . . . . . . . 11  |-  ( f  =  F  ->  dom  f  =  dom  F )
9 fdm 6051 . . . . . . . . . . . 12  |-  ( F : A --> R  ->  dom  F  =  A )
109ad2antrl 764 . . . . . . . . . . 11  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  dom  F  =  A )
118, 10sylan9eqr 2678 . . . . . . . . . 10  |-  ( ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V
) )  /\  f  =  F )  ->  dom  f  =  A )
1211eleq2d 2687 . . . . . . . . 9  |-  ( ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V
) )  /\  f  =  F )  ->  (
v  e.  dom  f  <->  v  e.  A ) )
13 simpr 477 . . . . . . . . . 10  |-  ( ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V
) )  /\  f  =  F )  ->  f  =  F )
1413fveq1d 6193 . . . . . . . . 9  |-  ( ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V
) )  /\  f  =  F )  ->  (
f `  v )  =  ( F `  v ) )
1512, 14ifbieq1d 4109 . . . . . . . 8  |-  ( ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V
) )  /\  f  =  F )  ->  if ( v  e.  dom  f ,  ( f `  v ) ,  <" v "> )  =  if ( v  e.  A ,  ( F `
 v ) , 
<" v "> ) )
1615mpteq2dv 4745 . . . . . . 7  |-  ( ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V
) )  /\  f  =  F )  ->  (
v  e.  ( C  u.  V )  |->  if ( v  e.  dom  f ,  ( f `  v ) ,  <" v "> )
)  =  ( v  e.  ( C  u.  V )  |->  if ( v  e.  A , 
( F `  v
) ,  <" v "> ) ) )
1716coeq1d 5283 . . . . . 6  |-  ( ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V
) )  /\  f  =  F )  ->  (
( v  e.  ( C  u.  V ) 
|->  if ( v  e. 
dom  f ,  ( f `  v ) ,  <" v "> ) )  o.  e )  =  ( ( v  e.  ( C  u.  V ) 
|->  if ( v  e.  A ,  ( F `
 v ) , 
<" v "> ) )  o.  e
) )
1817oveq2d 6666 . . . . 5  |-  ( ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V
) )  /\  f  =  F )  ->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  dom  f ,  ( f `  v
) ,  <" v "> ) )  o.  e ) )  =  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> ) )  o.  e ) ) )
1918mpteq2dv 4745 . . . 4  |-  ( ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V
) )  /\  f  =  F )  ->  (
e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  dom  f ,  ( f `  v
) ,  <" v "> ) )  o.  e ) ) )  =  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V )  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> )
)  o.  e ) ) ) )
20 fvex 6201 . . . . . . 7  |-  (mREx `  T )  e.  _V
213, 20eqeltri 2697 . . . . . 6  |-  R  e. 
_V
2221a1i 11 . . . . 5  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  R  e.  _V )
23 fvex 6201 . . . . . . 7  |-  (mVR `  T )  e.  _V
242, 23eqeltri 2697 . . . . . 6  |-  V  e. 
_V
2524a1i 11 . . . . 5  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  V  e.  _V )
26 simprl 794 . . . . 5  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  F : A --> R )
27 simprr 796 . . . . 5  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  A  C_  V
)
28 elpm2r 7875 . . . . 5  |-  ( ( ( R  e.  _V  /\  V  e.  _V )  /\  ( F : A --> R  /\  A  C_  V
) )  ->  F  e.  ( R  ^pm  V
) )
2922, 25, 26, 27, 28syl22anc 1327 . . . 4  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  F  e.  ( R  ^pm  V )
)
3021mptex 6486 . . . . 5  |-  ( e  e.  R  |->  ( G 
gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> ) )  o.  e ) ) )  e.  _V
3130a1i 11 . . . 4  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V )  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> )
)  o.  e ) ) )  e.  _V )
327, 19, 29, 31fvmptd 6288 . . 3  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  ( S `  F )  =  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> ) )  o.  e ) ) ) )
3332ex 450 . 2  |-  ( T  e.  _V  ->  (
( F : A --> R  /\  A  C_  V
)  ->  ( S `  F )  =  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> ) )  o.  e ) ) ) ) )
34 0fv 6227 . . . 4  |-  ( (/) `  F )  =  (/)
35 fvprc 6185 . . . . . 6  |-  ( -.  T  e.  _V  ->  (mRSubst `  T )  =  (/) )
364, 35syl5eq 2668 . . . . 5  |-  ( -.  T  e.  _V  ->  S  =  (/) )
3736fveq1d 6193 . . . 4  |-  ( -.  T  e.  _V  ->  ( S `  F )  =  ( (/) `  F
) )
38 fvprc 6185 . . . . . . 7  |-  ( -.  T  e.  _V  ->  (mREx `  T )  =  (/) )
393, 38syl5eq 2668 . . . . . 6  |-  ( -.  T  e.  _V  ->  R  =  (/) )
4039mpteq1d 4738 . . . . 5  |-  ( -.  T  e.  _V  ->  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> ) )  o.  e ) ) )  =  ( e  e.  (/)  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V )  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> )
)  o.  e ) ) ) )
41 mpt0 6021 . . . . 5  |-  ( e  e.  (/)  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V )  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> )
)  o.  e ) ) )  =  (/)
4240, 41syl6eq 2672 . . . 4  |-  ( -.  T  e.  _V  ->  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> ) )  o.  e ) ) )  =  (/) )
4334, 37, 423eqtr4a 2682 . . 3  |-  ( -.  T  e.  _V  ->  ( S `  F )  =  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V )  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> )
)  o.  e ) ) ) )
4443a1d 25 . 2  |-  ( -.  T  e.  _V  ->  ( ( F : A --> R  /\  A  C_  V
)  ->  ( S `  F )  =  ( e  e.  R  |->  ( G  gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> ) )  o.  e ) ) ) ) )
4533, 44pm2.61i 176 1  |-  ( ( F : A --> R  /\  A  C_  V )  -> 
( S `  F
)  =  ( e  e.  R  |->  ( G 
gsumg  ( ( v  e.  ( C  u.  V
)  |->  if ( v  e.  A ,  ( F `  v ) ,  <" v "> ) )  o.  e ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   ifcif 4086    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   <"cs1 13294    gsumg cgsu 16101  freeMndcfrmd 17384  mCNcmcn 31357  mVRcmvar 31358  mRExcmrex 31363  mRSubstcmrsub 31367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-mrsub 31387
This theorem is referenced by:  mrsubval  31406  mrsubrn  31410  elmrsubrn  31417
  Copyright terms: Public domain W3C validator