MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrfval Structured version   Visualization version   Unicode version

Theorem mvrfval 19420
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
mvrfval.v  |-  V  =  ( I mVar  R )
mvrfval.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
mvrfval.z  |-  .0.  =  ( 0g `  R )
mvrfval.o  |-  .1.  =  ( 1r `  R )
mvrfval.i  |-  ( ph  ->  I  e.  W )
mvrfval.r  |-  ( ph  ->  R  e.  Y )
Assertion
Ref Expression
mvrfval  |-  ( ph  ->  V  =  ( x  e.  I  |->  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) ) )
Distinct variable groups:    x, f,  .0.   
.1. , f, x    y,
f, D, x    y, W    f, h, I, x, y    R, f, x
Allowed substitution hints:    ph( x, y, f, h)    D( h)    R( y, h)    .1. ( y, h)    V( x, y, f, h)    W( x, f, h)    Y( x, y, f, h)    .0. ( y, h)

Proof of Theorem mvrfval
Dummy variables  i 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrfval.v . 2  |-  V  =  ( I mVar  R )
2 mvrfval.i . . . 4  |-  ( ph  ->  I  e.  W )
3 elex 3212 . . . 4  |-  ( I  e.  W  ->  I  e.  _V )
42, 3syl 17 . . 3  |-  ( ph  ->  I  e.  _V )
5 mvrfval.r . . . 4  |-  ( ph  ->  R  e.  Y )
6 elex 3212 . . . 4  |-  ( R  e.  Y  ->  R  e.  _V )
75, 6syl 17 . . 3  |-  ( ph  ->  R  e.  _V )
8 mptexg 6484 . . . 4  |-  ( I  e.  W  ->  (
x  e.  I  |->  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) )  e.  _V )
92, 8syl 17 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  .1.  ,  .0.  )
) )  e.  _V )
10 simpl 473 . . . . 5  |-  ( ( i  =  I  /\  r  =  R )  ->  i  =  I )
1110oveq2d 6666 . . . . . . . 8  |-  ( ( i  =  I  /\  r  =  R )  ->  ( NN0  ^m  i
)  =  ( NN0 
^m  I ) )
12 rabeq 3192 . . . . . . . 8  |-  ( ( NN0  ^m  i )  =  ( NN0  ^m  I )  ->  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } )
1311, 12syl 17 . . . . . . 7  |-  ( ( i  =  I  /\  r  =  R )  ->  { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin } )
14 mvrfval.d . . . . . . 7  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
1513, 14syl6eqr 2674 . . . . . 6  |-  ( ( i  =  I  /\  r  =  R )  ->  { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  =  D )
16 mpteq1 4737 . . . . . . . . 9  |-  ( i  =  I  ->  (
y  e.  i  |->  if ( y  =  x ,  1 ,  0 ) )  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) )
1716adantr 481 . . . . . . . 8  |-  ( ( i  =  I  /\  r  =  R )  ->  ( y  e.  i 
|->  if ( y  =  x ,  1 ,  0 ) )  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) )
1817eqeq2d 2632 . . . . . . 7  |-  ( ( i  =  I  /\  r  =  R )  ->  ( f  =  ( y  e.  i  |->  if ( y  =  x ,  1 ,  0 ) )  <->  f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ) )
19 simpr 477 . . . . . . . . 9  |-  ( ( i  =  I  /\  r  =  R )  ->  r  =  R )
2019fveq2d 6195 . . . . . . . 8  |-  ( ( i  =  I  /\  r  =  R )  ->  ( 1r `  r
)  =  ( 1r
`  R ) )
21 mvrfval.o . . . . . . . 8  |-  .1.  =  ( 1r `  R )
2220, 21syl6eqr 2674 . . . . . . 7  |-  ( ( i  =  I  /\  r  =  R )  ->  ( 1r `  r
)  =  .1.  )
2319fveq2d 6195 . . . . . . . 8  |-  ( ( i  =  I  /\  r  =  R )  ->  ( 0g `  r
)  =  ( 0g
`  R ) )
24 mvrfval.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
2523, 24syl6eqr 2674 . . . . . . 7  |-  ( ( i  =  I  /\  r  =  R )  ->  ( 0g `  r
)  =  .0.  )
2618, 22, 25ifbieq12d 4113 . . . . . 6  |-  ( ( i  =  I  /\  r  =  R )  ->  if ( f  =  ( y  e.  i 
|->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  r
) ,  ( 0g
`  r ) )  =  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) )
2715, 26mpteq12dv 4733 . . . . 5  |-  ( ( i  =  I  /\  r  =  R )  ->  ( f  e.  {
h  e.  ( NN0 
^m  i )  |  ( `' h " NN )  e.  Fin } 
|->  if ( f  =  ( y  e.  i 
|->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  r
) ,  ( 0g
`  r ) ) )  =  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) )
2810, 27mpteq12dv 4733 . . . 4  |-  ( ( i  =  I  /\  r  =  R )  ->  ( x  e.  i 
|->  ( f  e.  {
h  e.  ( NN0 
^m  i )  |  ( `' h " NN )  e.  Fin } 
|->  if ( f  =  ( y  e.  i 
|->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  r
) ,  ( 0g
`  r ) ) ) )  =  ( x  e.  I  |->  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) ) )
29 df-mvr 19357 . . . 4  |- mVar  =  ( i  e.  _V , 
r  e.  _V  |->  ( x  e.  i  |->  ( f  e.  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  |->  if ( f  =  ( y  e.  i  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  r ) ,  ( 0g `  r ) ) ) ) )
3028, 29ovmpt2ga 6790 . . 3  |-  ( ( I  e.  _V  /\  R  e.  _V  /\  (
x  e.  I  |->  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) )  e.  _V )  -> 
( I mVar  R )  =  ( x  e.  I  |->  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) ) )
314, 7, 9, 30syl3anc 1326 . 2  |-  ( ph  ->  ( I mVar  R )  =  ( x  e.  I  |->  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) ) )
321, 31syl5eq 2668 1  |-  ( ph  ->  V  =  ( x  e.  I  |->  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   ifcif 4086    |-> cmpt 4729   `'ccnv 5113   "cima 5117   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   0cc0 9936   1c1 9937   NNcn 11020   NN0cn0 11292   0gc0g 16100   1rcur 18501   mVar cmvr 19352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-mvr 19357
This theorem is referenced by:  mvrval  19421  mvrf  19424  subrgmvr  19461
  Copyright terms: Public domain W3C validator