MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgpsr Structured version   Visualization version   Unicode version

Theorem subrgpsr 19419
Description: A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
subrgpsr.s  |-  S  =  ( I mPwSer  R )
subrgpsr.h  |-  H  =  ( Rs  T )
subrgpsr.u  |-  U  =  ( I mPwSer  H )
subrgpsr.b  |-  B  =  ( Base `  U
)
Assertion
Ref Expression
subrgpsr  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  B  e.  (SubRing `  S )
)

Proof of Theorem subrgpsr
Dummy variables  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgpsr.s . . . 4  |-  S  =  ( I mPwSer  R )
2 simpl 473 . . . 4  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  I  e.  V )
3 subrgrcl 18785 . . . . 5  |-  ( T  e.  (SubRing `  R
)  ->  R  e.  Ring )
43adantl 482 . . . 4  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  R  e.  Ring )
51, 2, 4psrring 19411 . . 3  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  S  e.  Ring )
6 subrgpsr.u . . . . 5  |-  U  =  ( I mPwSer  H )
7 subrgpsr.h . . . . . . 7  |-  H  =  ( Rs  T )
87subrgring 18783 . . . . . 6  |-  ( T  e.  (SubRing `  R
)  ->  H  e.  Ring )
98adantl 482 . . . . 5  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  H  e.  Ring )
106, 2, 9psrring 19411 . . . 4  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  U  e.  Ring )
11 subrgpsr.b . . . . . 6  |-  B  =  ( Base `  U
)
1211a1i 11 . . . . 5  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  B  =  ( Base `  U
) )
13 eqid 2622 . . . . . 6  |-  ( Ss  B )  =  ( Ss  B )
14 simpr 477 . . . . . 6  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  T  e.  (SubRing `  R )
)
151, 7, 6, 11, 13, 14resspsrbas 19415 . . . . 5  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  B  =  ( Base `  ( Ss  B ) ) )
161, 7, 6, 11, 13, 14resspsradd 19416 . . . . 5  |-  ( ( ( I  e.  V  /\  T  e.  (SubRing `  R ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  U
) y )  =  ( x ( +g  `  ( Ss  B ) ) y ) )
171, 7, 6, 11, 13, 14resspsrmul 19417 . . . . 5  |-  ( ( ( I  e.  V  /\  T  e.  (SubRing `  R ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( .r `  U ) y )  =  ( x ( .r `  ( Ss  B ) ) y ) )
1812, 15, 16, 17ringpropd 18582 . . . 4  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  ( U  e.  Ring  <->  ( Ss  B
)  e.  Ring )
)
1910, 18mpbid 222 . . 3  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  ( Ss  B )  e.  Ring )
205, 19jca 554 . 2  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  ( S  e.  Ring  /\  ( Ss  B )  e.  Ring ) )
21 eqid 2622 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
2213, 21ressbasss 15932 . . . 4  |-  ( Base `  ( Ss  B ) )  C_  ( Base `  S )
2315, 22syl6eqss 3655 . . 3  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  B  C_  ( Base `  S
) )
24 eqid 2622 . . . . . . . . . . . 12  |-  ( 1r
`  R )  =  ( 1r `  R
)
2524subrg1cl 18788 . . . . . . . . . . 11  |-  ( T  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  T
)
26 subrgsubg 18786 . . . . . . . . . . . 12  |-  ( T  e.  (SubRing `  R
)  ->  T  e.  (SubGrp `  R ) )
27 eqid 2622 . . . . . . . . . . . . 13  |-  ( 0g
`  R )  =  ( 0g `  R
)
2827subg0cl 17602 . . . . . . . . . . . 12  |-  ( T  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  T
)
2926, 28syl 17 . . . . . . . . . . 11  |-  ( T  e.  (SubRing `  R
)  ->  ( 0g `  R )  e.  T
)
3025, 29ifcld 4131 . . . . . . . . . 10  |-  ( T  e.  (SubRing `  R
)  ->  if (
x  =  ( I  X.  { 0 } ) ,  ( 1r
`  R ) ,  ( 0g `  R
) )  e.  T
)
3130adantl 482 . . . . . . . . 9  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  if ( x  =  (
I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) )  e.  T )
327subrgbas 18789 . . . . . . . . . 10  |-  ( T  e.  (SubRing `  R
)  ->  T  =  ( Base `  H )
)
3332adantl 482 . . . . . . . . 9  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  T  =  ( Base `  H
) )
3431, 33eleqtrd 2703 . . . . . . . 8  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  if ( x  =  (
I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) )  e.  ( Base `  H
) )
3534adantr 481 . . . . . . 7  |-  ( ( ( I  e.  V  /\  T  e.  (SubRing `  R ) )  /\  x  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  ->  if ( x  =  ( I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) )  e.  ( Base `  H ) )
36 eqid 2622 . . . . . . 7  |-  ( x  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  =  ( x  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  ( 1r
`  R ) ,  ( 0g `  R
) ) )
3735, 36fmptd 6385 . . . . . 6  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  (
x  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) : { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } --> ( Base `  H ) )
38 eqid 2622 . . . . . . . 8  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
39 eqid 2622 . . . . . . . 8  |-  ( 1r
`  S )  =  ( 1r `  S
)
401, 2, 4, 38, 27, 24, 39psr1 19412 . . . . . . 7  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  ( 1r `  S )  =  ( x  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( x  =  ( I  X.  {
0 } ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) )
4140feq1d 6030 . . . . . 6  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  (
( 1r `  S
) : { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin } --> ( Base `  H )  <->  ( x  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  H
) ) )
4237, 41mpbird 247 . . . . 5  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  ( 1r `  S ) : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  H
) )
43 fvex 6201 . . . . . 6  |-  ( Base `  H )  e.  _V
44 ovex 6678 . . . . . . 7  |-  ( NN0 
^m  I )  e. 
_V
4544rabex 4813 . . . . . 6  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
4643, 45elmap 7886 . . . . 5  |-  ( ( 1r `  S )  e.  ( ( Base `  H )  ^m  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  <->  ( 1r `  S ) : {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } --> ( Base `  H
) )
4742, 46sylibr 224 . . . 4  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  ( 1r `  S )  e.  ( ( Base `  H
)  ^m  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } ) )
48 eqid 2622 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
496, 48, 38, 11, 2psrbas 19378 . . . 4  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  B  =  ( ( Base `  H )  ^m  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } ) )
5047, 49eleqtrrd 2704 . . 3  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  ( 1r `  S )  e.  B )
5123, 50jca 554 . 2  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  ( B  C_  ( Base `  S
)  /\  ( 1r `  S )  e.  B
) )
5221, 39issubrg 18780 . 2  |-  ( B  e.  (SubRing `  S
)  <->  ( ( S  e.  Ring  /\  ( Ss  B )  e.  Ring )  /\  ( B  C_  ( Base `  S )  /\  ( 1r `  S
)  e.  B ) ) )
5320, 51, 52sylanbrc 698 1  |-  ( ( I  e.  V  /\  T  e.  (SubRing `  R
) )  ->  B  e.  (SubRing `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   ifcif 4086   {csn 4177    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   0cc0 9936   NNcn 11020   NN0cn0 11292   Basecbs 15857   ↾s cress 15858   0gc0g 16100  SubGrpcsubg 17588   1rcur 18501   Ringcrg 18547  SubRingcsubrg 18776   mPwSer cmps 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-psr 19356
This theorem is referenced by:  ressmplbas2  19455  subrgmpl  19460
  Copyright terms: Public domain W3C validator