| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssunpr | Structured version Visualization version Unicode version | ||
| Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| Ref | Expression |
|---|---|
| ssunpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4180 |
. . . . . 6
| |
| 2 | 1 | uneq2i 3764 |
. . . . 5
|
| 3 | unass 3770 |
. . . . 5
| |
| 4 | 2, 3 | eqtr4i 2647 |
. . . 4
|
| 5 | 4 | sseq2i 3630 |
. . 3
|
| 6 | 5 | anbi2i 730 |
. 2
|
| 7 | ssunsn2 4359 |
. 2
| |
| 8 | ssunsn 4360 |
. . 3
| |
| 9 | un23 3772 |
. . . . . 6
| |
| 10 | 9 | sseq2i 3630 |
. . . . 5
|
| 11 | 10 | anbi2i 730 |
. . . 4
|
| 12 | ssunsn 4360 |
. . . 4
| |
| 13 | 4, 9 | eqtr2i 2645 |
. . . . . 6
|
| 14 | 13 | eqeq2i 2634 |
. . . . 5
|
| 15 | 14 | orbi2i 541 |
. . . 4
|
| 16 | 11, 12, 15 | 3bitri 286 |
. . 3
|
| 17 | 8, 16 | orbi12i 543 |
. 2
|
| 18 | 6, 7, 17 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: sspr 4366 sstp 4367 |
| Copyright terms: Public domain | W3C validator |