| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdva0 | Structured version Visualization version Unicode version | ||
| Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.) |
| Ref | Expression |
|---|---|
| reximdva0.1 |
|
| Ref | Expression |
|---|---|
| reximdva0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 3931 |
. . 3
| |
| 2 | reximdva0.1 |
. . . . . . 7
| |
| 3 | 2 | ex 450 |
. . . . . 6
|
| 4 | 3 | ancld 576 |
. . . . 5
|
| 5 | 4 | eximdv 1846 |
. . . 4
|
| 6 | 5 | imp 445 |
. . 3
|
| 7 | 1, 6 | sylan2b 492 |
. 2
|
| 8 | df-rex 2918 |
. 2
| |
| 9 | 7, 8 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-rex 2918 df-v 3202 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: n0snor2el 4364 hashgt12el 13210 refun0 21318 cstucnd 22088 supxrnemnf 29534 kerunit 29823 elpaddn0 35086 |
| Copyright terms: Public domain | W3C validator |