MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrssovtx Structured version   Visualization version   Unicode version

Theorem nbgrssovtx 26260
Description: The neighbors of a vertex are a subset of all vertices except the vertex itself. Stronger version of nbgrssvtx 26256. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.)
Hypothesis
Ref Expression
nbgrssovtx.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
nbgrssovtx  |-  ( G  e.  W  ->  ( G NeighbVtx  N )  C_  ( V  \  { N }
) )

Proof of Theorem nbgrssovtx
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 nbgrssovtx.v . . . . 5  |-  V  =  (Vtx `  G )
21nbgrisvtx 26255 . . . 4  |-  ( ( G  e.  W  /\  v  e.  ( G NeighbVtx  N ) )  ->  v  e.  V )
3 nbgrnself2 26259 . . . . . . . . . 10  |-  ( G  e.  W  ->  N  e/  ( G NeighbVtx  N )
)
43adantr 481 . . . . . . . . 9  |-  ( ( G  e.  W  /\  v  =  N )  ->  N  e/  ( G NeighbVtx  N ) )
5 df-nel 2898 . . . . . . . . . 10  |-  ( v  e/  ( G NeighbVtx  N )  <->  -.  v  e.  ( G NeighbVtx  N ) )
6 neleq1 2902 . . . . . . . . . . 11  |-  ( v  =  N  ->  (
v  e/  ( G NeighbVtx  N )  <->  N  e/  ( G NeighbVtx  N ) ) )
76adantl 482 . . . . . . . . . 10  |-  ( ( G  e.  W  /\  v  =  N )  ->  ( v  e/  ( G NeighbVtx  N )  <->  N  e/  ( G NeighbVtx  N ) ) )
85, 7syl5bbr 274 . . . . . . . . 9  |-  ( ( G  e.  W  /\  v  =  N )  ->  ( -.  v  e.  ( G NeighbVtx  N )  <->  N  e/  ( G NeighbVtx  N ) ) )
94, 8mpbird 247 . . . . . . . 8  |-  ( ( G  e.  W  /\  v  =  N )  ->  -.  v  e.  ( G NeighbVtx  N ) )
109ex 450 . . . . . . 7  |-  ( G  e.  W  ->  (
v  =  N  ->  -.  v  e.  ( G NeighbVtx  N ) ) )
1110con2d 129 . . . . . 6  |-  ( G  e.  W  ->  (
v  e.  ( G NeighbVtx  N )  ->  -.  v  =  N )
)
1211imp 445 . . . . 5  |-  ( ( G  e.  W  /\  v  e.  ( G NeighbVtx  N ) )  ->  -.  v  =  N )
1312neqned 2801 . . . 4  |-  ( ( G  e.  W  /\  v  e.  ( G NeighbVtx  N ) )  ->  v  =/=  N )
14 eldifsn 4317 . . . 4  |-  ( v  e.  ( V  \  { N } )  <->  ( v  e.  V  /\  v  =/=  N ) )
152, 13, 14sylanbrc 698 . . 3  |-  ( ( G  e.  W  /\  v  e.  ( G NeighbVtx  N ) )  ->  v  e.  ( V  \  { N } ) )
1615ex 450 . 2  |-  ( G  e.  W  ->  (
v  e.  ( G NeighbVtx  N )  ->  v  e.  ( V  \  { N } ) ) )
1716ssrdv 3609 1  |-  ( G  e.  W  ->  ( G NeighbVtx  N )  C_  ( V  \  { N }
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897    \ cdif 3571    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-nbgr 26228
This theorem is referenced by:  nbgrssvwo2  26261  usgrnbssovtx  26263  nbfusgrlevtxm1  26279  uvtxnbgr  26301  nbusgrvtxm1uvtx  26306  nbupgruvtxres  26308
  Copyright terms: Public domain W3C validator